Journal of Chemical Ecology

, Volume 36, Issue 6, pp 592–598 | Cite as

Male and Female Noctuid Moths Attracted to Synthetic Lures in Europe

  • Miklós TóthEmail author
  • István Szarukán
  • Béla Dorogi
  • Attila Gulyás
  • Pál Nagy
  • Zoltán Rozgonyi


In field tests in Europe, traps baited with a blend of isoamyl alcohol, acetic acid, and isobutanol (compounds previously found attractive to a number of noctuids in North America) caught the following noctuid moths: Agrotis segetum Schiff., Agrotis crassa Hbn., Agrotis exclamationis L., Amathes (Xestia) c-nigrum L., Apatele rumicis L., Amphipyra pyramidea L., Dipterygia scabriuscula L., Discestra trifolii Hfn., Euxoa aquilina Schiff., Euclidia glyphica L., Mamestra brassicae L., Mamestra oleracea L., Mamestra suasa Schiff., Mythimna albipuncta Den. & Schiff., Mythimna l-album L., Noctua pronuba L., and Trachea atriplicis L. A substantial percentage of the catch of each species of moths was females. The presence of isobutanol in the mixture was important for catching A. rumicis, D. trifolii, and E. glyphica. The addition of 3-methyl-1-pentanol to the ternary mixture did not increase trap captures of any of the moths. Traps baited with the floral attractant phenylacetaldehyde alone caught several species of noctuid moths. However, when phenylacetaldehyde was added to the isoamyl-alcohol ternary blend, no increases in catches of any of the species, relative to the ternary blend or phenyacetaldehyde alone, were observed, with catches of most species being depressed. Comparing the noctuid species attracted to the phenylacetaldehyde- and isoamyl alcohol-based lures showed that phenylacetaldehyde attracted predominantly Plusiinae and Melicleptriinae spp., while isoamyl alcohol-based lures attracted species mostly from the Noctuinae or Hadeninae subfamilies.


Female attractant Isoamyl alcohol Isobutanol Acetic acid Phenylacetaldehyde Lepidoptera Noctuidae 



The present research was partially supported by grant NKFP 4/012/2004 OM of the Hungarian Ministry of Education and OTKA grant K 81494. Thanks are due to G Szöcs and Zs. Kárpati for useful discussions and technical assistance in the initial phases of this project.


  1. Abafi-aiger, L. 1907. Lepidopteran Fauna of Hungary (in Hung.). Természettudományi Könyvkiadó Vállalat Vol. LXXVII, Athenaeum R.T., Budapest, p. 137.Google Scholar
  2. Balachowsky, A. S. (ed.) 1972. Entomologie appliquée à l`agriculture. Vol. II. Masson et Cie, Éditeurs, Paris, p. 1634.Google Scholar
  3. Bruce, T. J. and Cork, A. 2001. Electrophysiological and behavioral responses of female Helicoverpa armigera to compounds identified in flowers of African marigold, Tagetes erecta. J. Chem. Ecol. 27:1119–1131.CrossRefPubMedGoogle Scholar
  4. Bruce, T. J., Cork, A., Hall, D. R., and Dunkelblum, E. 2002. Laboratory and field evaluation of floral odours from African marigold, Tagetes erecta, and sweet pea, Lathyrus odoratus, as kairomones for the cotton bollworm Helicoverpa armigera. IOBC wprs Bull. 25:315–322.Google Scholar
  5. Cantelo, W. W. and Jacobson, M. 1979. Phenylacetaldehyde attracts moths to bladder flower and blacklight traps. Environ. Entomol. 8:444–447.Google Scholar
  6. Creighton, C. S., Mcfadden, T. L., and Cuthbert, E. R. 1973. Supplementary data on phenylacetaldehyde: an attractant for Lepidoptera. J. Econ. Entomol. 66:114–115.Google Scholar
  7. Dunn, O. J. 1961. Multiple comparisons among means. J. Amer. Stat. Assoc. 56:52–64.CrossRefGoogle Scholar
  8. Games, P. A. and Howell, J. F. 1976. Pairwise multiple comparison procedures with unequal n’s and/or variances: a Monte Carlo study. J. Educat. Stat. 1:113–125.CrossRefGoogle Scholar
  9. Jaccard, J., Becker, M. A., and Wood, G. 1984. Pairwise multiple comparison procedures: A review. Psychol. Bull. 96:589–596.CrossRefGoogle Scholar
  10. Knudsen, J. T., Tollsten, L., and Bergström, L. G. 1993. Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280.CrossRefGoogle Scholar
  11. Landolt, P. J. 1998. Chemical attractant for trapping yellowjackets Vespula germanica and Vespula pennsylvanica. Environ. Entomol. 27:1229–1234.Google Scholar
  12. Landolt, P. J. 2000. New chemical attractants for trapping Lacanobia subjuncta, Mamestra configurata, and Xestia c-nigrum (Lepidoptera: Noctuidae). J. Econ. Entomol. 93:101–106.CrossRefPubMedGoogle Scholar
  13. Landolt, P. J. and Alfaro, J. F. 2001. Trapping Lacanobia subjuncta, Xestia c-nigrum and Mamestra configurata (Lepidoptera: Noctuidae) with acetic acid and 3-methyl-1-butanol in controlled relesase dispensers. Environ Entomol. 30:656–662.CrossRefGoogle Scholar
  14. Landolt, P. J. and Hammond, P. C. 2001. Species composition of moths captured in traps baited with acetic acid and 3-methyl-1-butanol, in Yakima county, Washington. J. Lepid. Soc. 55:53–58.Google Scholar
  15. Landolt, P. J. and Highbee, B. S. 2002. Both sexes of the true armyworm (Lepidoptera: Noctuide) trapped with the feeding attractant composed of acetic acid and 3-methyl-1-butanol. Fl. Ent. 85:182–185.CrossRefGoogle Scholar
  16. Landolt, P. J., Lenczewski, B., and Heath, R. R. 1991. Lure and toxicant system for the cabbage looper (Lepidoptera: Noctuidae). J. Econ. Entomol. 84:1344–1347.Google Scholar
  17. Landolt, P. J., Reed, H. C., Aldrich, J. R., Antonelli, A. L., and Dickey, C. 1999. Social wasps (Hymenoptera, Vespidae) trapped with acetic-acid and isobutanol. Fl. Ent. 82:609–614.CrossRefGoogle Scholar
  18. Landolt, P. J., Smithhisler, C. S., Reed, H. C., and Mcdonough, L. M. 2000. Trapping social wasps (Hymenoptera, Vespidae) with acetic-acid and saturated short-chain alcohols. J. Econ. Entomol. 93:1613–1618.CrossRefPubMedGoogle Scholar
  19. Landolt, P. J., Adams, T., Reed, H. C., and Zack, R. S. 2001. Trapping alfalfa looper moths (Lepidoptera: Noctuidae) with single and double component floral chemical lures. Environ. Entomol. 30: 667–672.CrossRefGoogle Scholar
  20. Landolt, P. J., Adams, T., and Zack, R. S. 2006. Field response of alfalfa looper and cabbage looper moths (Lepidoptera: Noctuidae, Plusiinae) to seingle and binary blends of floral odorants. Environ. Entomol. 35:276–281.CrossRefGoogle Scholar
  21. Landolt, P. J., Suckling, D. M., and Judd, G. J. R. 2007. Positive interaction of a feeding attractant and a host kairomone for trapping the codling moth, Cydia pomonella (L.). J. Chem. Ecol. 33:2236–2244.CrossRefPubMedGoogle Scholar
  22. Mészáros, Z. 1993. Noctuidae (in Hung.), pp. 599–676, in T. Jermy and K. Balázs (eds.). A növényvédelmi állattan kézikönyve. Vol. 4B. Akadémiai Kiadó, Budapest.Google Scholar
  23. Pawar, C. S., Srivastava, C. P., and Reed, W. 1983. Phenylacetaldehyde: an attractant for Heliothis armigera. Int. Chickpea Newsl. 1983:27–28.Google Scholar
  24. Subchev, M., Toshova, T., Tóth, M., Voigt, E., Mikulás, J., and Francke, W. 2003. Catches of vine bud moth Theresimima ampellophaga (Lep., Zygaenidae: Procridinae) males in pheromone traps: effect of the purity and age of baits, design, colour and height of the traps, and daily sexual activity of males. Z. angew. Ent. 127:1–7.Google Scholar
  25. Tóth, M., Imrei, Z., and Szöcs, G. 2000. Non-sticky, non-saturable, high capacity new pheromone traps for Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and Helicoverpa (Heliothis) armigera (Lepidoptera: Noctuidae). (in Hung.). Integrált termesztés a kertészeti és szántóföldi kultúrákban. BFNTÁ, Budapest, 21:44–49.Google Scholar
  26. Tóth, M., Répási, V., and Szöcs, G. 2002. Chemical attractants for females of pest pyralids and phycitids (Lepidoptera: Pyralidae, Phycitidae). Acta Phytopath. Entomol. Hung. 37:375–384.CrossRefGoogle Scholar
  27. Tukey, J. 1949. One degree of freedom for non-additivity. Biometrics 5:232–242.CrossRefGoogle Scholar
  28. Tukey, J. 1955. Queries. Biometrics 11:111–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Miklós Tóth
    • 1
    Email author
  • István Szarukán
    • 2
  • Béla Dorogi
    • 2
  • Attila Gulyás
    • 2
  • Pál Nagy
    • 2
    • 3
  • Zoltán Rozgonyi
    • 2
  1. 1.Plant Protection Institute, HASBudapestHungary
  2. 2.Faculty of Agricultural Sciences, Department of Plant ProtectionUniversity of DebrecenDebrecenHungary
  3. 3.AgárdHungary

Personalised recommendations