Journal of Chemical Ecology

, Volume 36, Issue 5, pp 513–521 | Cite as

Modifications of the Chemical Profile of Hosts after Parasitism Allow Parasitoid Females to Assess the Time Elapsed Since the First Attack

  • Sebastien Lebreton
  • Jean-Philippe Christidès
  • Anne-Geneviève Bagnères
  • Claude Chevrier
  • Eric Darrouzet


In solitary parasitoids, only one adult can emerge from a given host. In some of these species, when several eggs are laid on the same host, supernumerary individuals are eliminated by lethal larval fights. In the solitary parasitoid Anisopteromalus calandrae, the probability of a second larva winning the fight depends on the time elapsed since the first oviposition. The older the first egg is at the moment a second egg is laid, the less chance the second egg has of winning the competition. As a consequence, females of this species lay their eggs preferentially on recently parasitized hosts rather than on hosts parasitized by an egg about to hatch. Anisopteromalus calandrae females parasitize bruchid larvae located in cowpea seeds. In a series of choice test experiments using an artificial seed system, we demonstrated that the cue that allows parasitoid females to differentiate between hosts parasitized for different lengths of time comes from the host and not from the artificial seed or the previously laid egg. This cue is perceived at short range, indicating that the chemicals involved are probably partly volatile. Interestingly, although parasitism stops host development, cuticular profiles continue to evolve, but in a different way from those of unparasitized hosts. This difference in the host’s cuticular profile after parasitism, therefore, probably underlies the parasitoid female’s discrimination.

Key Words

Cuticular hydrocarbons Semio-chemicals Kairomone Oviposition strategies Solitary parasitoids Anisopteromalus calandrae 



We thank E. Yates for correcting the English.


  1. Afsheen, S., Wang, X., Li, R., Zhu, C. S., and Lou, Y.-G. 2008. Differential attraction of parasitoids in relation to specificity of kairomones from herbivores and their by-products. Insect Sci. 15:381–397.CrossRefGoogle Scholar
  2. Bartlelt, R. J., Cossé, A. A., Petroski, R. J., and Weaver, D. K. 2002. Cuticular hydrocarbons and novel alkenediol diacetates from wheat stem sawfly (Cephus cinctus): natural oxidation to pheromone components. J. Chem. Ecol. 28:385–405.CrossRefGoogle Scholar
  3. Bartlelt, R. J. and Jones, R. L. 1983. (Z)-10-Nonadecenal: A pheromonally active air oxidation product of (Z,Z)-9,19 dienes in yellow-headed spruce sawfly. J. Chem. Ecol. 9:1333–1342.Google Scholar
  4. Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., Matthes, M., Napier, J. A., Pettersson, J., Pickett, J. A., Poppy, G. M., Pow, E. M., Pye, B. J., Smart, L. E., Wadhams, G. H., Wadhams, L. J., and Woodcock, C. M. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl. Acad. Sci. USA 97:9329–9334.CrossRefPubMedGoogle Scholar
  5. Blomquist, G. J. 2010. Structure and analysis of insect hydrocarbons, pp. 19–34. In Eds G. J. Blomquist and A.-G. Bagnères (ed.). Insect hydrocarbons. Cambridge Univ. Press.Google Scholar
  6. Colazza, S., Aquila, G., De Pasquale, C., Peri, E., and Millar, J. 2007. The egg parasitoid Trissolcus basalis uses n -nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J. Chem. Ecol. 33:1405–1420.Google Scholar
  7. Colazza, S., Salerno, G., and Wajnberg, E. 1999. Volatile and contact chemicals released by Nezara viridula (Heteroptera: Pentatomidae) have a kairomonal effect on the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). Biol. Control 16:310–317.CrossRefGoogle Scholar
  8. Darrouzet, E., Bignon, L., and Chevrier, C. 2007. Impact of mating status on egg-laying and superparasitism behaviour in a parasitoid wasp. Entomol. Exp. Appl. 123:279–285.CrossRefGoogle Scholar
  9. Darrouzet, E., Imbert, E., and Chevrier, C. 2003. Self-superparasitism consequences for offspring sex ratio in the solitary ectoparasitoid Eupelmus vuilleti. Entomol. Exp. Appl. 109:167–171.CrossRefGoogle Scholar
  10. Gauthier, N. and Monge, J. P. 1999. Could the egg itself be the source of the oviposition deterrent marker in the ectoparasitoid Dinarmus basalis? J. Insect Physiol. 45:393–400.CrossRefPubMedGoogle Scholar
  11. Gauthier, N., Monge, J. P., and Huignard, J. 1996. Superparasitism and host discrimination in the solitary ectoparasitoid Dinarmus basalis. Entomol. Exp. Appl. 79:91–99.CrossRefGoogle Scholar
  12. Godfray, H. C. J. 1994. Parasitoids, Beshavioral and Evolutionary Ecology. p. 473. Princeton University Press, New Jersey.Google Scholar
  13. Goubault, M., Plantegenest, M., Poinsot, D., and Cortesero, A. M. 2003. Effect of expected offspring survival probability on host selection in a solitary parasitoid. Entomol. Exp. Appl. 109:123–131.CrossRefGoogle Scholar
  14. Hilker, M. and Mcneil, J. 2008. Chemical and behavioral ecology, pp. 92–112, in E. Wajnberg, C. Bernstein & J. J. M. van Alphen (eds.). Behavioral ecology of insect parasitoids: From theoretical approaches to field applications, Blackwell Publishing Ltd.Google Scholar
  15. Hoffmeister, T. S. 2000. Marking decisions and host discrimination in a parasitoid attacking concealed hosts. Can. J. Zool. 78:1494–1499.CrossRefGoogle Scholar
  16. Howard, R. W. 2001. Cuticular hydrocarbons of adult Pteromalus cerealellae (Hymenoptera: Pteromalidae) and two larval hosts, angoumois grain moth (Lepidoptera: Gelechiidae) and cowpea weevil (Coleptera: Bruchidae). Ann. Emtomol. Soc. Am. 94:152–158.CrossRefGoogle Scholar
  17. Howard, R. W. and Baker, J. E. 2003. Morphology and chemistry of Dufour glands in four ectoparasitoids: Cephalonomia tarsalis, C. waterstoni (Hymenoptera: Bethylidae), Anisopteromalus calandrae, and Pteromalus cerealellae (Hymenoptera: Pteromalidae). Comp. Biochem. Physiol. B 135:153–167.CrossRefPubMedGoogle Scholar
  18. Hubbard, S. F., Marris, G., Reynolds, A., and Rowe, G. W. 1987. Adaptive patterns in the avoidance of superparasitism by solitary parasitic wasps. J. Anim. Ecol. 56:387–401.CrossRefGoogle Scholar
  19. Inoue, M. and Endo, T. 2008. Below-ground host location by Campsomeriella annulata (Hymenoptera: Scoliidae), a parasitoid of scarabaeid grubs. J. Ethol. 26:43–50.CrossRefGoogle Scholar
  20. Islam, K. S. and Copland, M. J. W. 2000. Influence of egg load and oviposition time interval on the host discrimination and offspring survival of Anagyrus pseudococci (Hymenoptera: Encyrtidae), a solitary endoparasitoid of citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae). Bull. Entomol. Res. 90:69–75.CrossRefPubMedGoogle Scholar
  21. Jaloux, B., Errard, C., Mondy, N., Vannier, F., and Monge, J. 2005. Sources of chemical signals which enhance multiparasitism preference by a cleptoparasitoid. J. Chem. Ecol. 31:1325–1337.CrossRefPubMedGoogle Scholar
  22. Kumazaki, M., Matsuyama, S., Suzuki, T., Kuwahara, Y., and Fijii, K. 2000. Parasitic wasp, Dinarmus basalis, utilizes oviposition-marking pheromone of host azuki bean weevils as host-recognizing kairomone. J. Chem. Ecol. 26:2677–2695.CrossRefGoogle Scholar
  23. Lebreton, S., Darrouzet, E., and Chevrier, C. 2009b. Could hosts considered as low quality for egg-laying be considered as high quality for host-feeding? J. Insect Physiol. 55:694–699.CrossRefPubMedGoogle Scholar
  24. Lebreton, S., Labarussia, M., Chevrier, C., and Darrouzet, E. 2009a. Discrimination of the age of conspecific eggs by an ovipositing ectoparasitic wasp. Entomol. Exp. Appl. 130:28–34.CrossRefGoogle Scholar
  25. Lizé, A., Carval, D., Cortesero, A.-M., Fournet, S., and Poinsot, D. 2006. Kin discrimination and altruism in the larvae of a solitary insect. Proc. R. Soc. B. 273:2381–2386.CrossRefPubMedGoogle Scholar
  26. Lockey, K. H. 1988. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Physiol. 89B:595–645.Google Scholar
  27. Meiners, T., Köpf, A., Stein, C., and Hilker, M. 1997. Chemical signals mediating interactions between Galeruca tanaceti L. (Coleoptera, Chrysomelidae) and its egg parasitoid Oomyzus galerucivorus (Hedqvits) (Hymenoptera, Eulophidae). J. Insect Behav. 10:523–539.CrossRefGoogle Scholar
  28. Nakamatsu, Y. and Tanaka, T. 2003. Venom of ectoparasitoid, Euplectrus sp. near plathypenae (Hymenoptera: Eulophidae) regulates the physiological state of Pseudaletia separata (Lepidoptera: Noctuidae) host as a food resource. J. Insect Physiol. 49:149–159.CrossRefPubMedGoogle Scholar
  29. Nakamatsu, Y. and Tanaka, T. 2004. Venom of Euplectrus separatae causes hyperlipidemia by lysis of host fat body cells. J. Insect Physiol. 50:267–275.CrossRefPubMedGoogle Scholar
  30. Onodera, J., Matsuyama, S., Suzuki, T., and Fujii, K. 2002. Host-recognizing kairomones for parasitic wasp, Anisopteromalus calandrae, from larvae of azuki dean weevil, Callosobruchus chinensis. J. Chem. Ecol. 28:1209–1220.CrossRefPubMedGoogle Scholar
  31. Outreman, Y., Le Ralec, A., Plantegenest, M., Chaubet, B., and Pierre, J. S. 2001. Superparasitism limitation in an aphid parasitoid: cornicle secretion avoidance and host discrimination ability. J. Insect Physiol. 47:339–348.Google Scholar
  32. Peri, S., Sole, M. A., Wajnberg, E., and Colazza, S. 2006. Effect of host kairomones and oviposition experience on the arrestment behavior of an egg parasitoid. J. Exp. Biol. 209:3629–3635.CrossRefPubMedGoogle Scholar
  33. Rivers, D. B. and Denlinger, D. L. 1995. Venom-induced alterations in fly lipid metabolism and its impact on larval development of the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). J. Invertebr. Pathol. 66:104–110.CrossRefGoogle Scholar
  34. Rosi, M. C., Isidoro, N., Colazza, S., and Bin, F. 2001. Source of the host marking pheromone in the egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae). J. Insect Physiol. 47:989–995.CrossRefPubMedGoogle Scholar
  35. Saïd, I., Gaertner, C., Renou, M., and Rivault, C. 2005. Perception of cuticular hydrocarbons by the olfactory organs in Periplaneta americana (L.) (Insecta: Dictyoptera). J. Insect Physiol. 51:1384–1389.CrossRefGoogle Scholar
  36. Steidle, J. L. M., Steppuhn, A., and Ruther, J. 2003. Specific foraging kairomones used by a generalist parasitoid. J. Chem. Ecol. 29:131–143.CrossRefPubMedGoogle Scholar
  37. Steiner, S., Steidle, J. L. M., and Ruther, J. 2007. Host-associated kairomones used for habitat orientation in the parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). J. Stored Prod. Res. 43:587–593.CrossRefGoogle Scholar
  38. Stelinski, L. L., Oakleaf, R., and Rodriguez-Saona, C. 2007. Oviposition-deterring pheromone deposited on blueberry fruit by the parasitic wasp, Diachasma alloeum. Behaviour 144:429–445.CrossRefGoogle Scholar
  39. Stelinski, L. L., Rodrigez-Saona, C., and Meyer, W. L. 2009. Recognition of foreign oviposition-marking pheromone in a multi-trophic context. Naturwissenschaften 96:585–592.CrossRefPubMedGoogle Scholar
  40. Van Alphen, J. J. M. and Visser, M. E. 1990. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35:59–79.Google Scholar
  41. Van Baaren, J. and Nénon, J. P. 1996. Intraspecific larval competition in two solitary parasitoids, Apoanagyrus (Epidinocarsis) lopezi and Leptomastix dactylopii. Entomol. Exp. Appl. 81:325–333.Google Scholar
  42. Van Dijken, M. J., Van Stratum, P., and Van Alphen, J. J. M. 1992. Recognition of individual-specific marked parasitized hosts by the solitary parasitoid Epidinocarsis lopezi. Behav. Ecol. Sociobiol. 30:77–82.Google Scholar
  43. Visser, M. E., Luyckx, B., Nell, H. W., and Boskamp, G. J. F. 1992. Adaptive superparasitism in solitary parasitoids: marking of parasitized hosts in relation to the pay-off from superparasitism. Ecol. Entomol. 17:76–82.CrossRefGoogle Scholar
  44. Völkl, W. and Mackauer, M. 1990. Age-specific pattern of host discrimination by the aphid parasitoid Ephedrus californicus Baker (Hymenoptera: Aphidiidae). Can. Entomol. 122:349–361.CrossRefGoogle Scholar
  45. Weber, C. A., Smilanick, J. M., Ehler, L. E., and Zalom, F. G. 1996. Ovipositional behavior and host discrimination in three scelionid egg parasitoids of stink bugs. Biol. Control 6:245–252.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sebastien Lebreton
    • 1
  • Jean-Philippe Christidès
    • 1
  • Anne-Geneviève Bagnères
    • 1
  • Claude Chevrier
    • 1
  • Eric Darrouzet
    • 1
  1. 1.Institut de Recherche sur la Biologie de l’Insecte, UMR 6035 CNRSUniversité François RabelaisToursFrance

Personalised recommendations