Journal of Chemical Ecology

, Volume 36, Issue 2, pp 179–191 | Cite as

Plants on Constant Alert: Elevated Levels of Jasmonic Acid and Jasmonate-Induced Transcripts in Caterpillar-Resistant Maize

  • Renuka Shivaji
  • Alberto Camas
  • Arunkanth Ankala
  • Jurgen Engelberth
  • James H. Tumlinson
  • W. Paul Williams
  • Jeff R. Wilkinson
  • Dawn Sywassink Luthe


This study was conducted to determine if constitutive levels of jasmonic acid (JA) and other octadecanoid compounds were elevated prior to herbivory in a maize genotype with documented resistance to fall armyworm (Spodoptera frugiperda) and other lepidopteran pests. The resistant inbred Mp708 had approximately 3-fold higher levels of jasmonic acid (JA) prior to herbivore feeding than the susceptible inbred Tx601. Constitutive levels of cis-12-oxo-phytodienoic acid (OPDA) also were higher in Mp708 than Tx601. In addition, the constitutive expression of JA-inducible genes, including those in the JA biosynthetic pathway, was higher in Mp708 than Tx601. In response to herbivory, Mp708 generated comparatively higher levels of hydrogen peroxide, and had a greater abundance of NADPH oxidase transcripts before and after caterpillar feeding. Before herbivore feeding, low levels of transcripts encoding the maize insect resistance cysteine protease (Mir1-CP) and the Mir1-CP protein were detected consistently. Thus, Mp708 appears to have a portion of its defense pathway primed, which results in constitutive defenses and the ability to mount a stronger defense when caterpillars attack. Although the molecular mechanisms that regulate the constitutive accumulation of JA in Mp708 are unknown, it might account for its enhanced resistance to lepidopteran pests. This genotype could be valuable in studying the signaling pathways that maize uses to response to insect herbivores.


Maize Induced defenses Jasmonic acid Defense gene expression Herbivory Plant-herbivore interactions Monocot Spodoptera frugiperda Fall armyworm 


  1. Ankala, A., Wilkinson, J., Williams, W.P., and Luthe D.S. 2009. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. Mol. Plant Microbe Interact. (in press).Google Scholar
  2. Balbi, V. and Devoto, A. 2008. Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 177:301–318.PubMedGoogle Scholar
  3. Beckers, G. J.M. and Conrath, U. 2007. Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10:425–431.CrossRefPubMedGoogle Scholar
  4. Biesgen, C. and Weiler, E.W. 1999. Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10,11-reductases from Arabidopsis thaliana. Planta 208:155–165.CrossRefPubMedGoogle Scholar
  5. Bonaventure, G., Gfeller, A., Proebsting, W.M., Hortensteiner, S., Chetelat, A., Martinoia, E., and Farmer, E.E. 2007a. A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant J. 49:889–898.CrossRefGoogle Scholar
  6. Bonaventure, G., Gfeller, A., Rodriguez, V.M., Armand, F., and Farmer, E.E. 2007b. The fou2 gain-of-function allele and the wild-type allele of Two Pore Channel 1 contribute to different extents or by different mechanisms to defense gene expression in Arabidopsis. Plant Cell Physiol. 48:1775–1789.CrossRefGoogle Scholar
  7. Böttcher, C. and Pollman, S. 2009. Plant oxylipins: Plant responses to 12-oxo-phytodecanoic acid are governed by its specific structural and functional properties. FEBS J. 276: 4693–4704.CrossRefPubMedGoogle Scholar
  8. Brooks, T.D., Willcox, M.C., Williams, W.P., and Buckley, P. M. 2005. Quantitative trait loci conferring resistance to fall armyworm and southwestern corn borer leaf feeding damage. Crop Sci. 45:2430–2434.CrossRefGoogle Scholar
  9. Brooks, T.D., Bushman, B.S., Williams, W.P., Mcmullen, M.D., and Buckley, P.M. 2007. Genetic basis of resistance to fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) leaf-feeding damage in maize. J. Econ. Entomol. 100:1470–1475.CrossRefPubMedGoogle Scholar
  10. Browse, J. and Howe, G.A. 2008. New weapons and a rapid response against insect attack. Plant Physiol. 146:832–838.CrossRefPubMedGoogle Scholar
  11. Cano-Delgado, A.I., Metzlaff, K., and Bevan, M.W. 2000. The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127:3395–3405.PubMedGoogle Scholar
  12. Cano-Delgado, A. I., Penfield, S., Smith, C., Catley, M., and Bevan, M. 2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34:351–362.CrossRefPubMedGoogle Scholar
  13. Chang, Y.M., Luthe, D.S., Davi, F.M., and Williams, W.P. 2000. Influence of whorl region from resistant and susceptible corn genotypes on fall armyworm (Lepidoptera: Noctuidae) growth and development. J. Econ. Entomol. 93:477–483.CrossRefPubMedGoogle Scholar
  14. Cordero, M.J., Raventos, D., and Sansegundo, B. 1994. Expression of a maize proteinase-inhibitor gene is induced in response to wounding and fungal infection—systemic wound-response of a monocot gene. Plant J. 6:141–150.CrossRefPubMedGoogle Scholar
  15. Davis, F., Williams, W.P., Mihm, J., Barry, B.E., Overman, L.J., Wiseman, B.R., and Riley, T.J. 1988. Resistance to multiple Lepidopterous species in tropical derived corn germplasm. Miss Agri. For. Exp. Stn. Tech. Bull. 157:1–6.Google Scholar
  16. Doke, N., Miura, Y., Sanchez, L.M., Park, H.J., Noritake, T., Yoshioka, H., and Kawakita, K. 1996. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence—a review. Gene 179:45–51.CrossRefPubMedGoogle Scholar
  17. Ellis, C. and Turner, J.G. 2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:1025–33.CrossRefPubMedGoogle Scholar
  18. Ellis, C., Karafyllidis, I., Wasternack, C., and Turner, J.G. 2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566.CrossRefPubMedGoogle Scholar
  19. Engelberth, J., Schmelz, E.A., Alborn, H.T., Cardoza, Y.J., Huang, J., and Tumlinson, J.H. 2003. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal. Biochem. 312:242–250.CrossRefPubMedGoogle Scholar
  20. Engelberth, J., Alborn, H.T., Schmelz, E.A., and Tumlinson, J.H. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. USA 101:1781–1785.CrossRefPubMedGoogle Scholar
  21. Engelberth, J., Seidl-Adams, I., Schultz, J.C., and Tumlinson, J.H. 2007. Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxophytodienoic acid reductases in Zea mays. Mol. Plant Microbe Interact. 20:707–716.CrossRefPubMedGoogle Scholar
  22. Erb, M., Flors, V., Karlen, D., De Lange, E., Planchamp, C., D'Alessandro, M., Turlings, T.C., and Ton, J. 2009. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J. 59:292–302.CrossRefPubMedGoogle Scholar
  23. Falco, M.C., Marbach, P.A.S., Pompermayer, P., Lopes, F.C.C., and Silva-Filho, M.C. 2001. Mechanisms of sugarcane response to herbivory. Genet. Mol. Biol. 24:113–122.CrossRefGoogle Scholar
  24. Farag, M.A., Fokar, M., Zhang, H.A. Allen, R.D., and Pare, P.W. 2005. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909.CrossRefPubMedGoogle Scholar
  25. Farmer, E.E. and Ryan, C.A. 1992. Octadecanoid precursors of jasmonic activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 4:129–134.CrossRefPubMedGoogle Scholar
  26. Frahry, G. and Schopfer, P. 1998. Inhibition of O2-reducing activity of horseradish peroxidase by diphenyleneiodonium. Phytochemistry 48:223–227.CrossRefPubMedGoogle Scholar
  27. Frost, C.J., Mescher, M.C., Carlson, J.E., and De Mores, C.M. 2008. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol. 146:818–824.CrossRefPubMedGoogle Scholar
  28. Gao, X., Starr, J., Gobel, C., Engelberth, J., Feussner, I., Tumlinson, J., and Kolomiets, M. 2008. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol. Plant Microbe Interact. 21:98–109.CrossRefPubMedGoogle Scholar
  29. Harfouche, A.L., Shivaji, R., Stocker, R., Williams,W.P., and Luthe, D.S. 2006. Ethylene signaling mediates a maize defense response to insect herbivory. Mol. Plant Microbe Interact.19:189–199.CrossRefPubMedGoogle Scholar
  30. Hedin, P., Davis, F.M., Williams, W.P., and Salin, M.L. 1984. Possible factors of leaf-feeding resistance in corn to southwestern corn borer. J. Agric. Food Chem. 32:262–267.CrossRefGoogle Scholar
  31. Hildebrand, D.F., Afitlhile, M., and Fukushige, H. 2000. Regulation of oxylipin synthesis. Biochem. Soc. Trans. 28:847–849.CrossRefPubMedGoogle Scholar
  32. Hilpert B., Bohlmann H., Op Den Camp R., Przybyla D., Miersch O., Buchala A., and Apel K. 2001. Isolation and characterization of signal transduction mutants of Arabidopsis thaliana that constitutively activate the octadecanoid pathway and form necrotic microlesions. Plant J. 26:435–446.CrossRefPubMedGoogle Scholar
  33. Howe G.A. and Jander G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.CrossRefPubMedGoogle Scholar
  34. Jensen, A.B., Raventos, D., and Mundy J. 2002. Fusion genetic analysis of jasmonate-signaling mutants in Arabidopsis. Plant J. 29:595–606.CrossRefPubMedGoogle Scholar
  35. Kazan, K. and Manners, J.M. 2008. Jasmonate signaling: toward an integrated view. Plant Physiol. 146:1459–1468.CrossRefPubMedGoogle Scholar
  36. Kessler, A. and Baldwin, I.T. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53:299–328.CrossRefPubMedGoogle Scholar
  37. Kim, E.S., Choi, E., Kim, Y., Cho, K., Lee, A., Shim, J., Rakwal, R., Agrawal, G.K., and Han O. 2003. Dual positional specificity and expression of non-traditional lipoxygenase induced by wounding and methyl jasmonate in maize seedlings. Plant Mol. Bio.lnteract. 52:1203–1213.CrossRefGoogle Scholar
  38. Ko, J.H., Kim, J.H., Jayanty, S.S., Howe, G.A., and Han, K.H. 2006. Loss of function of COBRA, a determinant of oriented cell expansion, invokes cellular defense responses in Arabidopsis thaliana. J. Exp. Bot. 57:2923–36.CrossRefPubMedGoogle Scholar
  39. Lopéz, L., Camas, A., Shivaji, R. Ankala, A., Williams, P., and Luthe, D.S. 2007. Mir1-CP, a novel defense cysteine protease accumulates in maize vascular tissues in response to herbivory. Planta 226: 517–527.CrossRefPubMedGoogle Scholar
  40. Mohan, S., Ma, P.W.K., Pechan, T., Bassford, E.R., Williams, W.P., and Luthe, D.S. 2006. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J. Insect Physiol. 52:21–28.CrossRefGoogle Scholar
  41. Mohan, S., Ma, P.W, Williams, W.P., and Luthe D.S. 2008. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin. PLoS One 3:e1786.CrossRefPubMedGoogle Scholar
  42. Orozco-Cardenas, M. and Ryan, C.A. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96:6553–7.CrossRefPubMedGoogle Scholar
  43. Orozco-Cardenas, M.L., Narvaez-Vasquez, J., and Ryan, C.A. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191.CrossRefPubMedGoogle Scholar
  44. Pechan, T., Ye, L.J, Chang, Y.M., Mitra, A., Lin, L., Davis, F.M., Williams, W.P., and Luthe, D.S. 2000. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell 12:1031–1040.CrossRefPubMedGoogle Scholar
  45. Pechan, T., Cohen, A., Williams,W.P., and Luthe, D.S. 2002. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc. Natl. Acad. Sci. USA 99:13319–13323.CrossRefPubMedGoogle Scholar
  46. Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:2002–2007.CrossRefGoogle Scholar
  47. Rakwal, R., Yang, G., and Komatsu, S. 2004. Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice. Mol. Biol. Rep. 31:113–119.CrossRefPubMedGoogle Scholar
  48. Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell 8:1809–1819.CrossRefPubMedGoogle Scholar
  49. Schaller F. 2001. Enzymes of the biosynthesis of octadecanoid-derived signaling molecules. J. Exp. Bot. 52:11–23.CrossRefPubMedGoogle Scholar
  50. Schmelz, E.A., Engelberth, J., Alborn, H.T., O'Donnell, P., Sammons, M., Toshima, H., and Tumlinson, J.H. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc. Natl. Acad. Sci. USA 100:10552–7.CrossRefPubMedGoogle Scholar
  51. Ton, J., D'Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., and Turlings, T.C.J. 2006. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49:16–26.CrossRefPubMedGoogle Scholar
  52. Van Der Westhuizen, A.J., Qian, X.M., and Botha, A.M. 1998. Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Rep. 18:132–137.CrossRefGoogle Scholar
  53. Walling L.L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.PubMedGoogle Scholar
  54. Wang, C., Zien, C.A., Afitlhile, M., Welti, R., Hildebrand, D.F., and Wang, X. 2000. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246.CrossRefPubMedGoogle Scholar
  55. Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100:681–697.CrossRefPubMedGoogle Scholar
  56. Williams, W.P., Buckley, P.M., Hedin, P.A., and Davis, F.M. 1990a. Laboratory bioassay for resistance in corn to fall armyworm and southwestern corn borer. J. Econ. Entomol. 83:1578–1571.Google Scholar
  57. Williams, W.P., Davis, F.M., and Windham, G.L. 1990b. Registration of Mp708 germplasm line of maize. Crop Sci. 30:757.CrossRefGoogle Scholar
  58. Williams, W.P., Davis, F.M., Buckley, P.M., Hedin, P.A., Baker, G.T., and Luthe, D.S. 1998. Factors associated with resistance to fall armyworm (Lepidoptera: Noctuidae) and southwestern corn borer (Lepidoptera: Crambidae) in corn at different vegetative stages. J. Econ. Entomol. 91:1471–1480.Google Scholar
  59. Zhang, J.L., Simmons, C., Yalpani, N., Crane. V., Wilkinson, H., and Kolomiets, M. 2005. Genomic analysis of the 12-oxo-phytodienoic acid reductase gene family of Zea mays. Plant Mol. Biol. 59:323–343.CrossRefPubMedGoogle Scholar
  60. Zhu-Salzman, K., Luthe, D.S., and Felton, G.W. 2008. Arthropod-inducible proteins: Broad-spectrum defenses against multiple herbivores. Plant Physiol. 146:852–858.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Renuka Shivaji
    • 1
  • Alberto Camas
    • 1
    • 6
  • Arunkanth Ankala
    • 1
  • Jurgen Engelberth
    • 2
  • James H. Tumlinson
    • 3
  • W. Paul Williams
    • 4
  • Jeff R. Wilkinson
    • 1
  • Dawn Sywassink Luthe
    • 5
  1. 1.Department of Biochemistry and Molecular BiologyMississippi State UniversityMississippi StateUSA
  2. 2.Department of BiologyUniversity of Texas San AntonioSan AntonioUSA
  3. 3.Department of Entomology and Center for Chemical EcologyThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.USDA-ARS Corn Host Plant Resistance Research LaboratoryMississippi StateUSA
  5. 5.Department of Crop and Soil SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  6. 6.Cinvestav-Unidad Irapuato, Dpto. Ingenieria GeneticaGtoMexico

Personalised recommendations