Journal of Chemical Ecology

, Volume 35, Issue 10, pp 1262–1271 | Cite as

Volatiles from a Mite-Infested Spruce Clone and Their Effects on Pine Weevil Behavior

  • Astrid Kännaste
  • Henrik Nordenhem
  • Göran Nordlander
  • Anna-Karin Borg-Karlson
Article

Abstract

Induced responses by Norway spruce (Picea abies) seedlings to feeding damage by two mite species were studied by analyzing the volatiles emitted during infestation. Four specimens of a Norway spruce (Picea abies L.) clone were infested with mites of Nalepella sp., another four with Oligonychus ununguis, and four were kept mite-free as controls. After a year of infestation, spruce volatiles were collected, analyzed, and identified using SPME-GC-MS. In addition, enantiomers of chiral limonene and linalool were separated by two-dimensional GC. Methyl salicylate (MeSA), (-)-linalool, (E)-β-farnesene, and (E,E)-α-farnesene were the main volatiles induced by both species of mites, albeit in different proportions. The ability of the main compounds emitted by the mite-infested spruces to attract or repel the pine weevil, Hylobius abietis (L.), was tested. (E)-β-farnesene was found to be attractive in the absence of spruce odor, whereas methyl salicylate had a deterrent effect in combination with attractive spruce odor. The other tested compounds had no significant effects on the behavior of the weevils.

Keywords

Acari Hylobius abietis Nalepella sp. Oligonychus ununguis Picea abies Norway spruce Linalool Farnesene Methyl salicylate Sesquiterpenes- 

References

  1. Arimura, G.-I., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., and Takabayashi, J. 2000a. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512-515.CrossRefPubMedGoogle Scholar
  2. Arimura, G.-I., Tashiro, K., Kuhara, S., Nishioka, T., Ozawa, R., and Takabayashi, J. 2000b. Gene responses in bean leaves induced by herbivory and by herbivory-induced volatiles. Biochem. Biophys. Res. Commun. 277:305–310.CrossRefPubMedGoogle Scholar
  3. Arimura, G.-I., Ozawa, R., Horiuchi, J.-I., Nishoika, T., and Takabayashi, J. 2001. Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem. Syst. Ecol. 29:1049–1061.CrossRefGoogle Scholar
  4. Arimura, G.-I., Ozawa, R., Kugimiya, S., Takabayashi, J., and Bohlmann, J. 2004. Herbivore-induced defence response in a model legume. Two-spotted spider mites induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol. 135:1976–1983.CrossRefPubMedGoogle Scholar
  5. Asaro, C., Sullivan, B. T., Dalusky, M. J., and Berisford, C. W. 2004. Volatiles associated with preferred and nonpreferred hosts of the Nantucket pine tip moth, Rhyacionia frustrana. J. Chem. Ecol. 30:977–990.CrossRefPubMedGoogle Scholar
  6. Bichão, H., Borg-Karlson, A.-K., Araujo, J., and Mustaparta, H. 2003. Identification of plant odours activating receptor neurones in the weevil Pissodes notatus F. (Coleoptera, Curculionidae). J. Comp. Physiol. 189:203–212.Google Scholar
  7. Borg-Karlson, A.-K., Lindström, M., Norin, T., Persson, M., and Valterova, I. 1993. Enantiomeric composition of monoterpene hydrocarbons in different tissues of Norway spruce, Picea abies (L.) Karst. A multi-dimensional gas chromatography study. Acta Chem. Scand. 47:138–144.CrossRefGoogle Scholar
  8. Borg-Karlson, A.-K., Nordlander, G., Mudalige, A., Nordenhem, H., and Unelius, C. R. 2006. Antifeedants in the feces of the pine weevil Hylobius abietis: identification and biological activity. J. Chem. Ecol. 32: 943–957.CrossRefPubMedGoogle Scholar
  9. Bouwmeester, H. J., Verstappen, F. W. A., Posthumus, M. A., and Dicke, M. 1999. Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis1. Plant Physiol. 121:173–180.CrossRefPubMedGoogle Scholar
  10. Byers, J. A. 1992. Attraction of bark beetles, Tomicus piniperda, Hylurgops palliates, and Trypodendron domesticum and other insects to short-chain alcohols and monoterpenes. J. Chem. Ecol. 18:2385–2402.CrossRefGoogle Scholar
  11. Byers, J. A, Zhang, Q-H., and Birgersson, G. 2000. Strategies of a bark beetle, Pityogenes bidentatus, in an olfactory landscape. Naturwissenschaften 87:503–507.CrossRefPubMedGoogle Scholar
  12. Campbell, M., and Ellis, B. E. 1992. Fungal elicitor-mediated responses in pine cell cultures. I. Induction of phenylpropanoid metabolism. Planta 186:409–417.CrossRefGoogle Scholar
  13. Cvikrová, M., Mala, J., Hrubcova, M., and Eder, J. 2006. Soluble and cell wall-bound phenolics and lignin in Ascocalyx abietina infected Norway spruce. Plant Science 170:563–570.CrossRefGoogle Scholar
  14. Davies, N. W. 1990. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. 503:1–24.CrossRefGoogle Scholar
  15. De Boer, J. G., and Dicke, M. 2004. The role of methyl salicylate in prey searching behaviour of the pedatory mite Phytoseiulus persimilis. J. Chem. Ecol. 30:255–271.CrossRefPubMedGoogle Scholar
  16. Delphia, C. M., Mescher, M. C., and De Moraes, C. M. 2007. Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defences on host-plant selection by thrips. J. Chem. Ecol. 33:997–1012.CrossRefPubMedGoogle Scholar
  17. Dicke, M., Van Beek, T. A., Posthumus, M. A., Ben Dom, N., Van Bokhoven, H., and De Groot, A. E. 1990. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. J. Chem. Ecol. 16:381–396.CrossRefGoogle Scholar
  18. Dudareva, N., and Pichersky, E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122:627–633.CrossRefPubMedGoogle Scholar
  19. Dudareva, N., Raguso, R. A., Wang, J., Ross, J. R., and Pichersky, E. 1998. Floral scent production in Clarkia breweri. III. Enzymatic synthesis and emission of benzenoid esters. Plant Physiol. 116:599–604.CrossRefPubMedGoogle Scholar
  20. Dudareva, N., Murfitt, L. M., Mann, C. J., Gorenstein, N., Kolosova, N., Kish, C. M., Bonham, C., and Wood, K. 2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961.CrossRefPubMedGoogle Scholar
  21. Dudareva, N., Negre, F., Nagegowda, D. A., and Orlova, I. 2006. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25:417–440.CrossRefGoogle Scholar
  22. Ehnström, B., Petersen, B., Löyttyniemi, K., and Tvermyr, S. 1974. Insect pests in forests of the Nordic countries 1967–1971. Ann. Entomol. Fenn. 40:37–47.Google Scholar
  23. Fatouros, N. E., Van Loon, J. J. A., Hordijk, K. A., Smid, H. M., and Dicke, M. 2005. Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids. J. Chem. Ecol. 31:2033–2047.CrossRefPubMedGoogle Scholar
  24. Gang, D. R., Wang, J., Dudareva, N., Nam, K. H., Simon, J. E., Lewinsohn, E., and Pichersky, E. 2001. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol. 125:539–555.CrossRefPubMedGoogle Scholar
  25. Gilman, E. F., and Watson, D. G. 1994. Picea abies Norway spruce. Environmental Horticulture Department, Fact Sheet ST-448. <http://hort.ufl.edu/trees/PICABIA.pdf>.
  26. Grodzki, W. 1997. Changes in the occurrence of bark beetles on Norway spruce in a forest decline area in the Sudety Mountains in Poland. USDA Forest Service General Technical Report NE-236 <http://iufro-archive.boku.ac.at/wu70307/valproc/grodzk.pdf>.
  27. Guterman, I., Masci, T., Chen, X., Negre, F., and Pichersky, E. 2006. Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol. Biol. 60:555–563.CrossRefPubMedGoogle Scholar
  28. Heiden, A. C., Kobel, K., Langebartels, C., Schuh-Thomas, G., and Wildt, J. 2003. Emissions of oxygenated volatile organic compounds from plants. Part I: Emission from lipoxygenase activity. J. Atmos. Chem. 45:143–172.CrossRefGoogle Scholar
  29. Hiraoka, H., Mori, N., Okabe, K., Nishida, R., and Kuwahara, Y. 2003. Chemical ecology of astigmatid mites LXIX. Neryl formate [3.7-dimethyl-(Z)-2.6-octadienyl formate] as the alarm pheromone of an acarid mite, Histiogaster rotundud Woodring (Acari: Acaridae). Appl. Entomol. Zool. 38:379–385.CrossRefGoogle Scholar
  30. Huber, D. P. W., Gries, R., Borden, J. H., and Pierce, H. D. 2000. A survey of antennal responses by five species of coniferophagous bark beetles (Coleoptera: Scolytidae) to bark volatiles of six species of angiosperm trees. Chemoecology 10:103–113.CrossRefGoogle Scholar
  31. Janssen, A. 1999. Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol. Exp. Appl. 90:191–198.CrossRefGoogle Scholar
  32. Jeppson, L. R., Keifer, H. H., and Baker, E. W. 1975. Mites injurious to economic plants. University of California Press, Berkeley and Los Angeles.Google Scholar
  33. Jourdes, M., Cardenas, C. L., Laskar, D. D., Moinuddin, S. G. A., Davin, L. B., and Lewis, N. G. 2007. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications. Phytochemistry 68:1932–1956.CrossRefPubMedGoogle Scholar
  34. Kännaste, A., Vongvanich, N., and Borg-Karlson, A.-K. 2008. Infestation by a Nalepella species induces emissions of α- and β-farnesenes, (-)-linalool and aromatic compounds in Norway spruce clones of different susceptibility to the large pine weevil. Arthropod-Plant Interact. 2:31–41.CrossRefGoogle Scholar
  35. Kielkiewicz, M., PUCHALSKA, E., and Czajkowska, B. 2005. Changes in biochemical composition of needles of ornamental dwarf spruce (Picea glauca ‘Conica’) induced by spruce spider mite (Oligonychus ununguis Jacobi, Acari: Tetranychidae) feeding. Acta Physiol. Plant. 27:463–471.CrossRefGoogle Scholar
  36. Koeduka, T., Fridman, E., Gang, D. R., Vassāo, D. G., Jackson, B. L., Kish, C. M., Orlova, I., Spassova, S. M., Lewis, N. G., Noel, J. P., Baiga, T. J., Dudareva, N., and Pichersky, E. 2006. Eugenol and isoeugenol, characteristic aromatic constituents of spices, and biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 103:10128–10133.CrossRefPubMedGoogle Scholar
  37. Legrand, S., Nordlander, G., Nordenhem, H., Borg-Karlson, A.-K., and Unelius, C. R. 2004. Hydroxy-methoxybenzoic methyl esters: synthesis and antifeedant activity on the pine weevil, Hylobius abietis. Z. Naturforsch. B 59:829–835.Google Scholar
  38. Lehman, R. D. 1982. Mites (Acari) of Pennsylvania conifers. Trans. Amer. Entomol. Soc. 108:181–286.Google Scholar
  39. Löyttyniemi, K. 1973. On the biology of Nalepella haarlovi Boczek va. Picea abietis Löyttyniemi (Acarina, Eriophyidae). Commun. Inst. For. Fenn. 73:1–16.Google Scholar
  40. Martin, D. M., Fäldt, J., and Bohlmann, J. 2004. Functional characterization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 135:1908–1927.CrossRefPubMedGoogle Scholar
  41. Miller, D. R., Crowe, C. M., Asaro, C., and Debarr, G. L. 2003. Dose and enantiospesific responses of white pine cone beetles, Conophthorus coniperda, to α-pinene in an eastern white pine seed orchard. J. Chem. Ecol. 29:437–451.CrossRefPubMedGoogle Scholar
  42. Morita, A., Mori, N., Nishida, R., Hirai, N., and Kuwahara, Y. 2004. Neral (the alarm pheromone) biosynthesis via the mevalonate pathway, evidenced by D-glucose-1- 13C feeding in Carpoglyphus lactis and 13C incorporation into other opisthonotal gland exudates. J. Pestic. Sci. 29:27–32.CrossRefGoogle Scholar
  43. Mumm, R., and Hilker, M. 2005. The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem. Senses 30:337–343.CrossRefPubMedGoogle Scholar
  44. Mumm, R., Tiemann, T., Varama, M., and Hilker, M. 2005. Choosy egg parasitoids: specificity of oviposition-induced volatiles exploited by an egg parasitoid of pine sawflies. Entomol. Exp. Appl. 115:217–225.CrossRefGoogle Scholar
  45. Musser, R. O., Farmer, E., Peiffer, M., Williams, S. A., and Felton, G. W. 2006. Ablation of catepillar labial salivary glands: technique for determining the role of salvia in insect-plant interactions. J. Chem. Ecol. 32:981–992.CrossRefPubMedGoogle Scholar
  46. Nishimura, K., Shimizu, N., Mori, N., and Kuwahara, Y. 2002. Chemical ecology of astigmatid mites. LXIV The alarm pheromone neral functions as an attractant in Schwiebea elongate (Banks) (Acari: Acaridae). Appl. Entomol. Zool. 37:13–18.CrossRefGoogle Scholar
  47. Nordlander, G. 1990. Limonene inhibits attraction to α-pinene in the pine weevils Hylobius abietis and H. pinastri. J. Chem. Ecol. 16:1307–1320.CrossRefGoogle Scholar
  48. Nordlander, G. 1991. Host finding in the pine weevil Hylobius abietis: effects of conifer volatiles and added limonene. Entomol. Exp. Appl. 59 :229–237.CrossRefGoogle Scholar
  49. Pare, P. W., and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121:325–331.CrossRefPubMedGoogle Scholar
  50. Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S., and Klessig, D. F. 2007. Methyl salicylate is a critical signal for plant systemic acquired resistance. Science 318:113–116.CrossRefPubMedGoogle Scholar
  51. Pettersson, E. M., Sullivan, B. T., Anderson, P., Berisford, C. W., and Birgersson, G. 2000. Odor perception in the bark beetle parasitoid Roptrocerus xylophagorum exposed to host associated volatiles. J. Chem. Ecol. 26:2507–2525.CrossRefGoogle Scholar
  52. Puchalska, E. 2006. The influence of Oligonychus ununguis Jacobi (Acari: Tetranychidae) on phytosynthetic activity and needle damage of Picea glauca ‘Conica’. Biological Lett. 43:353–360.Google Scholar
  53. Ruther, J. 2000. Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography-mass-spectrometry. J. Chromatogr. A 890:313–319.CrossRefPubMedGoogle Scholar
  54. Schultz, T. P. 1987. Role of the p-hydroxyl group in the nitrobenzene oxidation of hydroxybenzyl alcohols. J. Org. Chem. 52:279–281.CrossRefGoogle Scholar
  55. Shulaev, V., Silverman, P., and Raskin, I. 1997. Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718–721.CrossRefGoogle Scholar
  56. Takabayashi, J., Dicke, M., and Posthumus, M. A. 1991. Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore. Chemoecology 2:1–6.CrossRefGoogle Scholar
  57. Takabayashi, J., Dicke, M., and Posthumus, M. A. 1994. Volatile herbivore-induces terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.CrossRefGoogle Scholar
  58. Thiery, D., and Marion-Poll, F. 1998. Electroantennogram responses of Douglas-fir seed chalcids to plant volatiles. J. Insect Physiol. 44:483–490.CrossRefPubMedGoogle Scholar
  59. Tominaga, Y., Yamamoto, M., Kuwahara, Y., and Sugawara, R. 1984. Behavioural responses of the pinewood nematode to terpenes. Agric. Biol. Chem 48:519–520.Google Scholar
  60. Van Den Boom, C. E. M., Van Beek, T. A., Posthumus, M. A., De Groot, A., and Dicke, M. 2004. Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding of plant from various families. J. Chem. Ecol. 30:69–89.CrossRefPubMedGoogle Scholar
  61. Weissbecker, B., Van Loon, J. J. A., and Dicke, M. 1999. Electroantennogram responses of a predator, Perillus bioculatus, and its prey, Leptinotarsa decemlineata, to plant volatiles. J. Chem. Ecol. 25:2313–2325.CrossRefGoogle Scholar
  62. Wibe, A., Borg-Karlson, A-K., Norin, T., and Mustaparta, H. 1997. Identification of plant volatiles activating single receptor neurons in the pine weevil (Hylobius abietis). J. Comp. Physiol. 180:585–595.CrossRefGoogle Scholar
  63. Xugen, S., and Luqin, Q. 2006. Effect of volatiles from plants on the selectivity of Tetranychus viennensis for different host plants. Front. For. China 1:105–108.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Astrid Kännaste
    • 1
    • 3
  • Henrik Nordenhem
    • 2
  • Göran Nordlander
    • 2
  • Anna-Karin Borg-Karlson
    • 1
  1. 1.Department of Chemistry, Ecological Chemistry GroupRoyal Institute of TechnologyStockholmSweden
  2. 2.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Institute of Agricultural and Environmental Sciences, Department of Plant PhysiologyEstonian University of Life SciencesTartuEstonia

Personalised recommendations