Journal of Chemical Ecology

, 35:1181 | Cite as

Prothoracic Gland Semiochemicals of Green Lacewings

  • Jeffrey Richard Aldrich
  • Thanh C. Le
  • Qing-He Zhang
  • Jorge Torres
  • Shaun L. Winterton
  • Baoyu Han
  • Gary L. Miller
  • Kamlesh R. Chauhan
Article

Abstract

Adult chrysopids have paired prothoracic glands (PG) that are thought to produce defensive secretions (allomones). We analyzed PG extracts of the following green lacewings from North and South America, Australia, and China: Ceraeochrysa cubana (Brazil); Chrysopa (= Co.) oculata, Co. nigricornis, Co. incompleta, Co. quadripunctata (USA), and Co. septempunctata (China); Chrysoperla (= Cl.) rufilabris (USA) and Cl. sp. (Brazil); Plesiochrysa ramburi and Mallada spp. (Australia). PG secretions are characteristic for species within a genus, except for Chrysopa spp. (Z)-4-Tridecene is ubiquitous, but (Z,Z)-4,7-tridecadiene is a major PG constituent in some Chrysopa spp. and in P. ramburi. Earlier reports that Co. oculata and Co. nigricornis produce 1-tridecene were shown to be in error. Chrysopa PG secretions are distinguished by the presence or absence of N-3-methylbutylacetamide, plus skatole (3-methylindole). Skatole is also identified for the first time from the Plesiochrysa and Ceraeochrysa. The PG secretion in Plesiochrysa ramburi is characterized by the presence of (Z)-4-undecene instead of (Z)-4-tridecene, and N-3-methylbutylpropanamide instead of the acetamide, resembling the PG secretions of Chrysopa nigricornis, Co. septempunctata and Co. incompleta. The chemotaxonomic value of PG semiochemicals is discussed, including evidence for subgroups within the genus Chrysopa as it now stands.

Keywords

Pheromone Allomone Tridecene Skatole Iridodial Amide Chemotaxonomy Predator Biosynthesis Neuroptera Chrysopidae 

References

  1. Aldrich, J. R., Kochansky, J. P., and Abrams, C. B. 1984. Attractant for a beneficial insect and its parasitoids: pheromone of the predatory spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). Environ. Entomol. 13:1031–1036.Google Scholar
  2. Bellas, T. E. and Fletcher, B. S. 1979. Identification of the major components in the secretion from the rectal pheromone glands of the Queensland fruit flies Dacus tryoni and Dacus neohumeralis (Diptera: Tephritidae). J. Chem. Ecol. 5:795–803.CrossRefGoogle Scholar
  3. Blum, M. S., Wallace, J. B., and Fales, H. M. 1973. Skatole and tridecene: Identification and possible role in a chrysopid secretion. Insect Biochem. 3:353–357.CrossRefGoogle Scholar
  4. Brooks, S. J. and Barnard, P. C. 1990. The green lacewings of the world: a generic review (Neuroptera: Chrysopidae. Bull. Br. Mus. Nat. Hist. (Entomol. Series) 59:117–286.Google Scholar
  5. Brooks, S. J. 1997. An overview of the current status of Chrysopidae (Neuroptera) systematics. Dtsch. ent. Z. 44:267–275.Google Scholar
  6. Chauhan, K., Bhatt, R. K., Falck, J. R., and Capdevila, J. H. 1994. Total synthesis of the ethanol inducible, proinflammatory autacoid 3(S)-hydroxy-leukotriene B4 (3-OH-LTB4) and analogues. Tetrahedron Lett. 35:1825–1828.CrossRefGoogle Scholar
  7. Chauhan, K. R., Zhang, Q.-H., and Aldrich, J. R. 2004. Iridodials: Enantiospecific synthesis and stereochemical assignment of the pheromone for the goldeneyed lacewing, Chrysopa oculata (Neuroptera: Chrysopidae). Tetrahedron Lett. 45:3339–3340.CrossRefGoogle Scholar
  8. Chauhan, K. R., Levi, V., Zhang, Q.-H., and Aldrich, J. R. 2007. Female goldeneyed lacewings (Neuroptera: Chrysopidae: Chrysopa oculata) approach but seldom enter traps baited with the male-produced compound, iridodial. J. Econ. Entomol. 100:1751–1755.CrossRefPubMedGoogle Scholar
  9. Cripps, C., Blomquist, G. J., and De Renobales, M. 1986. De novo biosynthesis of linoleic acid in insects. Biochim. Biophys. Acta 876:572–580.Google Scholar
  10. Farine, J.-P., Semon, E., Everaerts, C., Abed, D., Grandcolas, P., and Brossut, R. 2002. Defensive secretion of Therea petiveriana: Chemical identification and evidence of an alarm function. J. Chem. Ecol. 28:1629–1640.CrossRefPubMedGoogle Scholar
  11. Goloboff, P. A., Carpenter, J. M., Ariasc, J. S., and Esquivelc, D. R. M. 2008. Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics 24:1–16.CrossRefGoogle Scholar
  12. Güsten, R. and Dettner, K. 1991. The prothoracic gland of the Chrysopidae (Neuropteroidea: Planipennia), pp. 60–65. in L. Zombori and L. Peregovits (eds.), Proceedings of the 4th European Congress of Entomology and the XIII Internationale Symposium für die Entomofaunistik Mitteleuropas. Hungarian Natural History Museum, Budapest, Hungary, Gödöllö, Hungary, 1–6 September 1991.Google Scholar
  13. Heath, R. R. and Landolt, P. J. 1988. The isolation, identification and synthesis of the alarm pheromone of Vespula squamosa (Drury) (Hymenoptera: Vespidae) and associated behavior. Experientia 44:82–83.CrossRefGoogle Scholar
  14. Henry, C. S. 1982. Reproductive and calling behavior in two closely related sympatric lacewing species, Chrysopa oculata and Chrysopa chi (Neuroptera: Chrysopidae). Proc. Entomol. Soc. Wash. 84:191–203.Google Scholar
  15. Henry, C. S. and Wells, M. M. 2007. Can what we don't know about lacewing systematics hurt us? Am. Entomol. 53:42–47.Google Scholar
  16. Jurenka, R. A. 2004. Biosynthesis of insect pheromones. The Chemistry of Pheromones and Other Semiochemicals I. Topics in Current Chemistry 239:97–131.CrossRefGoogle Scholar
  17. Landolt, P. J. and Heath, R. R. 1987. Alarm pheromone behavior of Vespula squamosa (Hymenoptera: Vespidae). Fla. Entomol. 70:222–225.CrossRefGoogle Scholar
  18. Leonhardt, B. A. and Devilbiss, E. D. 1985. Separation and double-bond determination on nanogram quantities of aliphatic monounsaturated alcohols, aldehydes and carboxylic acid methyl esters. J. Chromatogr. A 322:484–490.CrossRefGoogle Scholar
  19. McEwen, P., New, T. R., and Whittington, A. E. 2001. Lacewings in the Crop Environment. Cambridge University Press, Cambridge, UK; New York.Google Scholar
  20. Penny, N. D., Tauber, C. A., and Leon, T. D. 2000. A new species of Chrysopa from Western North America with a key to North American species (Neuroptera: Chrysopidae). Ann. Entomol. Soc. Am. 93:776–784.CrossRefGoogle Scholar
  21. Stelzl, M. and Devetak, D. 1999. Neuroptera in agricultural ecosystems. Agricult. Ecosyst. Environ. 74:305–321.CrossRefGoogle Scholar
  22. Szentkirályi, F. 2001. Ecology and habitat relationships. in P. McEwen, T. R. New, and A. E. Whittington (eds.), Lacewings in the Crop Environment. Cambridge University Press, Cambridge, UK; New York.Google Scholar
  23. Winterton, S. and Freitas, S. 2006. Molecular phylogeny of the green lacewings (Neuroptera: Chrysopidae). Aust. J. Entomol. 45:235–243.CrossRefGoogle Scholar
  24. Zhang, Q.-H., Chauhan, K. R., Erbe, E. F., Vellore, A. R., and Aldrich, J. R. 2004. Semiochemistry of the goldeneyed lacewing Chrysopa oculata (Neuroptera: Chrysopidae): Attraction of males to a male-produced pheromone. J. Chem. Ecol. 30:1849–1870.CrossRefPubMedGoogle Scholar
  25. Zhang, Q.-H., Schneidmiller, R. G., Hoover, D., Young, K., Welshons, D., Margaryan, A., Aldrich, J. R., and Chauhan, K. R. 2006a. Male-produced pheromone of the green lacewing, Chrysopa nigricornis (Neuroptera: Chrysopidae). J. Chem. Ecol. 32:2163–2176.CrossRefPubMedGoogle Scholar
  26. Zhang, Q.-H., Sheng, M., Chen, G., Aldrich, J. R., and Chauhan, K. R. 2006b. Iridodial: a powerful attractant for the green lacewing, Chrysopa septempunctata (Neuroptera: Chrysopidae). Naturwissenschaften 93:461–465.CrossRefPubMedGoogle Scholar
  27. Zhu, J., Unelius, R. C., Park, K. C., Ochieng, S. A., Obrycki, J. J., and Baker, T. C. 2000. Identification of (Z)-4-tridecene from defensive secretion of green lacewing, Chrysoperla carnea. J. Chem. Ecol. 26:2421–2434.CrossRefGoogle Scholar

Copyright information

© U.S. Government 2009

Authors and Affiliations

  • Jeffrey Richard Aldrich
    • 1
  • Thanh C. Le
    • 1
  • Qing-He Zhang
    • 2
  • Jorge Torres
    • 3
  • Shaun L. Winterton
    • 4
  • Baoyu Han
    • 5
  • Gary L. Miller
    • 6
  • Kamlesh R. Chauhan
    • 1
  1. 1.USDA-ARS Invasive Insect Biocontrol & Behavior LaboratoryBeltsvilleUSA
  2. 2.Sterling International, Inc.SpokaneUSA
  3. 3.DEPA-EntomologiaUniversidade Federal Rural de PernambucoRecifeBrasil
  4. 4.Department of Primary Industries & FisheriesIndooroopillyAustralia
  5. 5.Tea Research Institute of Chinese Academy of Agricultural SciencesHangzhouPeople’s Republic of China
  6. 6.USDA-ARS Systematic Entomology LaboratoryBeltsvilleUSA

Personalised recommendations