Journal of Chemical Ecology

, Volume 35, Issue 10, pp 1234–1241 | Cite as

Low Temperature Dormancy Affects the Quantity and Quality of the Female Sexual Attractiveness Pheromone in Red-sided Garter Snakes



Low temperature dormancy is a necessary requirement of the annual cycle of most nonmigratory, temperate vertebrates. The red-sided garter snake, Thamnophis sirtalis parietalis, overwinters in communal dens during its prolonged winter dormancy (8 mo), and upon emergence, reproductive behavior of both sexes is maximal. Previous work on this species showed that male courtship behavior is maximally induced after simulated low temperature dormancy. The purpose of this study was to determine whether low temperature dormancy affects the pheromone profiles of individual female red-sided garter snakes. We collected females in the fall at den sites in Manitoba, Canada, and extracted pheromones from individuals at three different time points: fall (field), winter (lab), and spring (lab). Total skin lipid and pheromone fraction masses increased from fall to spring, and pheromone profiles were distinctly different in the fall and spring. Pheromone profiles became dominated by the long-chain, unsaturated methyl ketone components of the blend by the time snakes emerged in the spring. Further, the amounts of both saturated and unsaturated components increased from fall to spring, suggesting significant sex pheromone synthesis was induced by low temperature dormancy.


Attractivity Gas chromatography-mass spectrometry Hibernation Reproduction Seasonality Sex pheromone Thamnophis sirtalis parietalis 



This work was funded by an EPA STAR Fellowship (FP-91669601-2) awarded to MRP and partially funded by an NSF grant (0620125-IOB) to RTM. We would like to thank A. and G. Johnson for their support in the field, and D. Roberts and W. Watkins of Manitoba Conservation for their assistance with field work in Manitoba, Canada. W. Gaeuman assisted with statistical analyses.


  1. Aleksiuk, M. and Gregory, P. T. 1974. Regulation of seasonal mating behavior in Thamnophis sirtalis parietalis. Copeia 1974:681–689.CrossRefGoogle Scholar
  2. Andersson, M. 1994. Sexual Selection. Princeton University Press, Princeton.Google Scholar
  3. Beach, F. A. 1976. Sexual attractivity, proceptivity, and receptivity in female mammals. Horm. Behav. 7:105–138.CrossRefPubMedGoogle Scholar
  4. Bohnet, S., Rogers, L., Sasaki, G., and Kolattukudy, P. E. 1991. Estradiol induces proliferation of peroxisome-like microbodies and the production of 3-hydroxy fatty acid diesters, the female pheromones, in the uropygial glands of male and female mallards. J. Biol. Chem. 266:9795–9804.PubMedGoogle Scholar
  5. Bona-Gallo, A. and Licht, P. 1983. Effects of temperature on sexual receptivity and ovarian recrudescence in the garter snake Thamnophis sirtalis parietalis. Herpetol. 39:173–182.Google Scholar
  6. Bruce, H. M. 1965. Effect of castration on the reproductive pheromones of male mice. J. Reprod. Fertil. 10:141–143.PubMedGoogle Scholar
  7. Camazine, B., Garstka, W. R., Tokarz, R., and Crews, D. 1980. Effects of castration and androgen replacement on male courtship behavior in the red-sided garter snake (Thamnophis sirtalis parietalis). Horm. Behav. 14:358–372.CrossRefPubMedGoogle Scholar
  8. Choi, M.–Y., Tatsuki, S., and Boo, K.–S. 1998. Regulation of sex pheromone biosynthesis in the oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae). J. Insect Physiol. 44:653–658.CrossRefGoogle Scholar
  9. Crews, D. 1976. Hormonal control of male courtship behavior and female attractivity in the garter snake (Thamnophis radix). Horm. Behav. 7:451–460.CrossRefPubMedGoogle Scholar
  10. Crews, D. and Moore, M. C. 1986. Evolution of mechanisms controlling mating behavior. Science 231:121–125.CrossRefPubMedGoogle Scholar
  11. Duellman, W. E. and Trueb, L. 1994. Biology of Amphibians. Johns Hopkins University Press, Baltimore.Google Scholar
  12. Foster, S. P. 2000. Periodicity of sex pheromone biosynthesis, release and degradation in the lightbrown apple moth, Epiphyas postvittana (Walker). Arch. Insect Biochem. Physiol. 43:125–136.CrossRefPubMedGoogle Scholar
  13. Garstka, W. R., Camazine, B., and Crews, D. 1982. Interactions of behavior and physiology during the annual reproductive cycle of the red-sided garter snake (Thamnophis sirtalis parietalis). Herpetol. 38:104–123.Google Scholar
  14. Gerhardt, H. C. 1978. Temperature coupling in the vocal communication system of the gray tree frog, Hyla versicolor. Science 199:992–994.CrossRefPubMedGoogle Scholar
  15. Gregory, P. T. 1976. Life-history parameters of the red-sided garter snake (Thamnophis sirtalis parietalis) in an extreme environment, the Interlake region of Manitoba. National Museum of Canada, Publications in Zoology 13:1–44.Google Scholar
  16. Hawley, A. W. and Aleksiuk, M. 1975. Thermal regulation of spring mating behavior in the red-sided garter snake (Thamnophis sirtalis parietalis). Can. J. Zool. 53:768–776.CrossRefGoogle Scholar
  17. Hazel, J. R. and Williams, E. E. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res. 29:167–227.CrossRefPubMedGoogle Scholar
  18. Hoffmann, K. 1978. Effects of short photoperiods on puberty, growth and moult in the Djungarian hamster (Phodopus sungorus). J. Reprod. Fertil. 54:29–35.PubMedCrossRefGoogle Scholar
  19. Hudson, R. and Distel, H. 1990. Sensitivity of female rabbits to changes in photoperiod as measured by pheromone emission. J. Comp. Physiol. A 167:225–230.CrossRefPubMedGoogle Scholar
  20. Iwata, T., Kawahara, G., Yamamoto, K., Zhou, C., Nakajo, S., Shioda, S., and Kikuyama, S. 2000a. Effect of prolactin and androgen on the expression of the female-attracting pheromone silefrin in the abdominal gland of the newt, Cynops ensicauda. Biol. Reprod. 63:1867–1872.CrossRefPubMedGoogle Scholar
  21. Iwata, E., Wakabayashi, Y., Kakuma, Y., Kikusui, T., Takeuchi, Y., and Mori, Y. 2000b. Testosterone-dependent primer pheromone production in the sebaceous gland of male goat. Biol. Reprod. 62:806–810.CrossRefPubMedGoogle Scholar
  22. Jacob, J., Balthazart, J., and Schoffeniels, E. 1979. Sex differences in the chemical composition of uropygial gland waxes in domestic ducks. Biochem. Syst. Ecol. 7:149–153.CrossRefGoogle Scholar
  23. Jakobsson, A., Jorgensen, J. A., and Jacobsson, A. 2005. Differential regulation of fatty acid elongation enzymes in brown adipocytes implies a unique role for Elovl3 during increased fatty acid oxidation. Am. J. Physiol. Endocrinol. Metab. 289:E517–526.CrossRefPubMedGoogle Scholar
  24. Jakobsson, A., Westerberg, R., and Jacobsson, A. 2006. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid Res. 45:237–249.CrossRefPubMedGoogle Scholar
  25. Kikuyama, S., Nakada, T., Toyoda, F., Iwata, T., Yamamoto, K., and Conlon, J. M. 2005. Amphibian pheromones and endocrine control of their secretion. Ann. N Y Acad. Sci. 1040:123–130.CrossRefPubMedGoogle Scholar
  26. Kolattukudy, P. E. and Rogers, L. 1987. Biosynthesis of 3-hydroxy fatty acids, the pheromone components of female mallard ducks, by cell-free preparations from the uropygial gland. Arch. Biochem. Biophys. 252:121–129.CrossRefPubMedGoogle Scholar
  27. Krohmer, R. W., Bieganski, G. J., Baleckaitis, D. D., Harada, N., and Balthazart, J. 2002. Distribution of aromatase immunoreactivity in the forebrain of redsided garter snakes at the beginning of the winter dormancy. J. Chem. Neuroanat. 23:59–71.CrossRefPubMedGoogle Scholar
  28. Kubie, J. L., Cohen, J., and Halpern, M. 1978. Shedding enhances the sexual attractiveness of oestradiol treated garter snakes and their untreated penmates. Anim. Behav. 26:562–570.CrossRefGoogle Scholar
  29. LeMaster, M. P. and Mason, R. T. 2001. Annual and seasonal variation in the female sexual attractiveness pheromone of the red-sided garter snake, Thamnophis sirtalis parietalis, pp. 369–376, in A. Marchlewska-Koj, J. Lepri, and D. Muller-Schwarze (eds.). Chemical Signals in Vertebrates 9. Kluwer Academic/Plenum, New York.Google Scholar
  30. LeMaster, M. P. and Mason, R. T. 2002. Variation in a female sexual attractiveness pheromone controls male mate choice in garter snakes. J. Chem. Ecol. 28:1269–1285.CrossRefPubMedGoogle Scholar
  31. LeMaster, M. P., Stefani, A., Shine, R., and Mason, R. T. 2008. Cross-dressing in chemical cues: Exploring ‘she-maleness’ in newly-emerged male garter snakes, pp. 223–230, in J. L. Hurst, R. J. Beynon, S. C. Roberts, and T. D. Wyatt (eds.). Chemical Signals in Vertebrates 11. Springer, New York.CrossRefGoogle Scholar
  32. Lutterschmidt, D. I. 2006. Chronobiology of garter snakes: environmental and hormonal mechanisms mediating hibernation and reproduction. Ph.D. dissertation, Oregon State University, Corvallis, OR.Google Scholar
  33. Lutterschmidt, D. I., LeMaster, M. P., and Mason, R. T. 2006. Minimal overwintering temperatures of red-sided garter snakes (Thamnophis sirtalis parietalis): a possible cue for emergence? Can. J. Zool. 84:771–777.CrossRefGoogle Scholar
  34. Maderson, P. F. A. 1986. The tetrapod epidermis: A system preadapted as a semiochemical source, pp. 13–25, in D. Duvall, D. Mueller-Schwarze, and R. M. Silverstein (eds.). Chemical Signals in Vertebrates 4. Plenum, New York.Google Scholar
  35. Mason, R. T., Chinn, J. W., and Crews, D. 1987. Sex and seasonal differences in the skin lipids of garter snakes. Comp. Biochem. Physiol. B 87:999–1003.CrossRefPubMedGoogle Scholar
  36. Mason, R. T., Fales, H. M., Jones, T. H., Pannell, L. K., Chinn, J. W., and Crews, D. 1989. Sex pheromones in snakes. Science 245:290–293.CrossRefPubMedGoogle Scholar
  37. Mason, R. T., Jones, T. H., Fales, H. M., Pannell, L. K., and Crews, D. 1990. Characterization, synthesis, and behavioral responses to sex attractiveness pheromones of red-sided garter snakes (Thamnophis sirtalis parietalis). J. Chem. Ecol. 16:2353–2369.CrossRefGoogle Scholar
  38. McCune, B., Grace, J. B., and Urban, D. L. 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.Google Scholar
  39. Mendonça, M. T. and Crews, D. 1996. Effects of ovariectomy and estrogen replacement on attractivity and receptivity in a dissociated pattern breeder, the red-sided garter snake (Thamnophis sirtalis parietalis). J. Comp. Physiol. A 178:373–381.CrossRefPubMedGoogle Scholar
  40. Michael, R. P. 1975. Hormonal steroids and sexual communication in primates. J. Steroid Biochem. 6:161–170.CrossRefPubMedGoogle Scholar
  41. Møller, A. P. and SzÉp, T. 2005. Rapid evolutionary change in a secondary sexual character linked to climatic change. J. Evol. Biol. 18:481–495.CrossRefPubMedGoogle Scholar
  42. Moore, F. L. 1978. Effects of progesterone on sexual attractivity in female rough-skinned newts, Taricha granulosa. Copeia 1978:530–532.CrossRefGoogle Scholar
  43. Mugford, R. A. and Nowell, N. W. 1971. Endocrine control over production and activity of the anti-aggression pheromone from female mice. J. Endocrinol. 49:225–232.CrossRefPubMedGoogle Scholar
  44. Noble, G. K. 1937. The sense organs involved in the courtship of Storeria, Thamnophis and other snakes. Bull. Am. Mus. Nat. Hist. 73:673–725.Google Scholar
  45. Pandey, S. C. and Pandey, S. D. 1990. Role of photoperiod and temperature in production of the oestrus-inducing pheromone in male wild mice. Acta. Physiol. Hung. 76:201–204.PubMedGoogle Scholar
  46. Peltonen, L. M., Arieli, Y., Harjula, R., Pyörnilä, A., and Marder, J. 2000. Local cutaneous water barrier in cold- and heat-acclimated pigeons (Columba livia) in relation to cutaneous water evaporation. J. Morph. 246:118–130.CrossRefPubMedGoogle Scholar
  47. Polak, M. and Starmer, W. T. 2005. Environmental origins of sexually selected variation and a critique of the fluctuating asymmetry-sexual selection hypothesis. Evolution 59:577–585.PubMedGoogle Scholar
  48. Pope, M. M., Gaston, L. K., and Baker, T. C. 1982. Composition, quantification, and periodicity of sex pheromone gland volatiles from individual Heliothis virescens females. J. Chem. Ecol. 8:1043–1055.CrossRefGoogle Scholar
  49. Raina, A. K. and Klun, J. A. 1984. Brain factor control of sex pheromone production in the female corn earworm moth. Science 225:531–533.CrossRefPubMedGoogle Scholar
  50. Raina, A., Jaffe, H., Kempe, T. G., Keim, P., Blacher, R. W., Fales, H. M., Riley, C. T., Klun, J. A., Ridgway, R. L., and Hayes, D. K. 1989. Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244:796–798.CrossRefPubMedGoogle Scholar
  51. Rajchard, J. 2007. Intraspecific and interspecific chemosignals in birds: a review. Veterinarni Medicina 52:385–391.Google Scholar
  52. Ritchie, M. G., Saarikettu, M., Livingstone, S., and Hoikkala, A. 2001. Characterization of female preference functions for Drosophila montana courtship song and a test of the temperature coupling hypothesis. Evolution 55:721–727.CrossRefPubMedGoogle Scholar
  53. Rust, C. C. and Meyer, R. K. 1969. Hair color, molt, and testis size in male, short-tailed weasels treated with melatonin. Science 165:921–922.CrossRefPubMedGoogle Scholar
  54. Shimizu, I. and Barth, F. G. 1996. The effect of temperature on the temporal structure of the vibratory courtship signals of a spider (Cupiennius salei Keys). J. Comp. Physiol. A 179:363–370.CrossRefGoogle Scholar
  55. Shine, R., Phillips, B., Waye, H., LeMaster, M. P., and Mason, R. T. 2003. Chemosensory cues allow courting male garter snakes to assess body length and body condition of potential mates. Behav. Ecol. Sociobiol. 54:162–166.Google Scholar
  56. Sower, L. L., Shorey, H. H., and Gaston, L. K. 1971. Sex pheromones of noctuid moths. XXV. Effects of temperature and photoperiod on circadian rhythms of sex pheromone release by females of Trichoplusia ni. Ann. Entomol. Soc. Am. 27:488–492.Google Scholar
  57. Takahashi, N., Hasunuma, I., Iwata, T., Umezawa, K., Yamamoto, K., Marin, A., Perroteau, I., Vellano, C., and Kikuyama, S. 2001. Molecular cloning of newt prolactin (PRL) cDNA: effect of temperature on PRL mRNA expression. Gen. Comp. Endocrinol. 121:188–195.CrossRefPubMedGoogle Scholar
  58. Thiessen, D. D., Friend, H. C., and Lindzey, G. 1968. Androgen control of territorial marking in the Mongolian gerbil. Science 160:432–434.CrossRefPubMedGoogle Scholar
  59. Tiku, P. E., Gracey, A. Y., Macartney, A. I., Beynon, R. J., and Cossins, A. R. 1996. Cold-induced expression of delta9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 271:815.CrossRefPubMedGoogle Scholar
  60. Toyoda, F., Tanaka, S., Matsuda, K., and Kikuyama, S. 1994. Hormonal control of response to and secretion of sex attractants in Japanese newts. Physiol. Behav. 55:569–576.CrossRefPubMedGoogle Scholar
  61. West, P. M. and Packer, C. 2002. Sexual selection, temperature, and the lion’s mane. Science 297:1339–1343.CrossRefPubMedGoogle Scholar
  62. Whittier, J. M. and Tokarz, R. 1992. Physiological regulation of sexual behavior in female reptiles, pp. 24–69, in C. Gans and D. Crews (eds.). Biology of the Reptilia. University of Chicago Press, Chicago.Google Scholar
  63. Whittier, J. M., Mason, R. T., Crews, D., and Licht, P. 1987. Role of light and temperature in the regulation of reproduction in the red-sided garter snake, Thamnophis sirtalis parietalis. Can. J. Zool. 65:2090–2096.CrossRefGoogle Scholar
  64. Willard, R., Packard, G. C., Packard, M. J., and Tucker, J. K. 2000. The role of the integument as a barrier to penetration of ice into overwintering hatchlings of the painted turtle (Chrysemys picta). J. Morph. 246:150–159.CrossRefPubMedGoogle Scholar
  65. Yamamoto, K., Toyoda, F., Tanaka, S., Hayashi, H., and Kikuyama, S. 1996. Radioimmunoassay of a newt sex pheromone, Sodefrin, and the influence of hormones on its level in the abdominal gland. Gen. Comp. Endocrinol. 104:356–363.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ZoologyOregon State UniversityCorvallisUSA

Personalised recommendations