Advertisement

Journal of Chemical Ecology

, Volume 35, Issue 9, pp 1108–1116 | Cite as

Odorants that Induce Hygienic Behavior in Honeybees: Identification of Volatile Compounds in Chalkbrood-Infected Honeybee Larvae

  • Jodi A. I. Swanson
  • Baldwyn Torto
  • Stephen A. Kells
  • Karen A. Mesce
  • James H. Tumlinson
  • Marla Spivak
Article

Abstract

Social insects that live in large colonies are vulnerable to disease transmission due to relatively high genetic relatedness among individuals and high rates of contact within and across generations. While individual insects rely on innate immune responses, groups of individuals also have evolved social immunity. Hygienic behavior, in which individual honeybees detect chemical stimuli from diseased larvae and subsequently remove the diseased brood from the nest, is one type of social immunity that reduces pathogen transmission. Three volatile compounds, collected from larvae infected with the fungal pathogen Ascosphaera apis and detected by adult honey bees, were identified by coupled gas chromatography-electroantennographic detection and gas chromatography-mass spectrometry. These three compounds, phenethyl acetate, 2-phenylethanol, and benzyl alcohol, were present in volatile collections from infected larvae but were absent from collections from healthy larvae. Two field bioassays revealed that one of the compounds, phenethyl acetate is a key compound associated with Ascosphaera apis-infected larvae that induces hygienic behavior.

Keywords

Apis mellifera Hygienic behavior Insect chemoreception Social immunity Chalkbrood Gas chromatography-electroantennographic detection 

References

  1. Akino, T., and Yamaoka, R. 1996. Origin of oleic acid corpse recognition signal in the ant, Formica japonica Motschlsky (Hymenoptera: Formicidae). Jap. J. Appl. Entomol. Zool. 40: 265–271.Google Scholar
  2. Arathi, H.S., Burns, I., and Spivak, M. 2000. Ethology of hygienic behavior in the honey bee Apis mellifera L. (Hymenoptera: Apidae): behavioral repertoire of hygienic bees. Ethology 106: 365–379.CrossRefGoogle Scholar
  3. ARATHI, H. S., and SPIVAK, M. 2001. Influence of colony genotypic composition on the performance of hygienic behavior in the honey bee (Apis mellifera L.) Anim. Behav. 62:57–66.CrossRefGoogle Scholar
  4. ARATHI, H. S., HO, G., and SPIVAK, M. 2007. Inefficient task partitioning among nonhygienic honeybees, Apis mellifera L., and implications for disease transmission. Anim. Behav. 72:431–438.CrossRefGoogle Scholar
  5. BEHRINGER, D. C., BUTLER, M. J., and SHIELDS, J. D. 2006. Avoidance of disease by social lobsters. Nature 25:421.CrossRefGoogle Scholar
  6. Cook, R.D., and Weisberg, S. 1999. Applied Regression Including Computing and Graphics, John Wiley & Sons, New York, NY. 593 pp. (Arc software available from http://www.stat.umn.edu.floyd.lib.umn.edu/arc/software.html, downloaded on 3 September 2008).
  7. Cremer, S., Armitage, S.A.O., and Schmid-Hempel, P. 2007. Social immunity. Curr. Biol. 17: R693–R702.PubMedCrossRefGoogle Scholar
  8. Cremer, S., and Sixt, M. 2009. Analogies in the evolution of individual and social immunity. Phil. Trans. R. Soc. B 364: 129–142.PubMedCrossRefGoogle Scholar
  9. FAHRBACH, S.E., and MESCE, K.A. 2005. “Neuroethoendocrinology”: integration of field and laboratory studies in insect neuroendocrinology. Horm. Behav. 48: 352–359.PubMedCrossRefGoogle Scholar
  10. Free, J. B., and Winder, M. E. 1983. Brood recognition by honeybee (Apis mellifera) workers. Anim. Behav. 31: 539–545.CrossRefGoogle Scholar
  11. Gilliam, M., Taber, S. III, and Richardson, G. 1983. Hygienic behavior of honey bees in relation to chalkbrood disease. Apidologie 14: 29–39.CrossRefGoogle Scholar
  12. Gilliam, M., and Vandenberg, J.D. 1997. Fungi, pp. 81–110, in R. A. Morse and K. Flottum (eds.). Honey Bee Pests, Predators and Diseases. Third Edition. A. I. Root Co, Medina, OhioGoogle Scholar
  13. Gramacho, K. P., and Spivak, M. 2003. Differences in olfactory sensitivity and behavioral responses among honey bees bred for hygienic behavior. Behav. Ecol. Sociobiol. 54: 472–479.CrossRefGoogle Scholar
  14. Howard, D.F., and Tschinkel, W. R. 1976. Aspects of necrophoric behavior in the red imported fire ant, Solenpsis invicta. Behaviour 56: 157–178CrossRefGoogle Scholar
  15. HUGHES, W. O. H., EILENBERG, J., and BOOMSMA, J. J. 2002. Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc. Biol. Sci. 269: 1811–1819.PubMedCrossRefGoogle Scholar
  16. Ibrahim, A., Reuter, G. S., and Spivak, M. 2007. Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor. Apidologie 38: 67–76.CrossRefGoogle Scholar
  17. Le Conte, Y., Arnold, G., Trouiller, J., Masson, C., and Chappe, B. 1990. Identification of a brood pheromone in honey bees. Naturwissenschaften 77: 334–336CrossRefGoogle Scholar
  18. Masterman, R., Ross, R., Mesce, K. A., and Spivak, M. 2001. Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honey bees (Apis mellifera L.). J. Comp. Physiol. A 187: 441–452.Google Scholar
  19. Masterman, R., Smith, B. H., and Spivak, M. 2000. Brood odor discrimination abilities in hygienic honey bees (Apis mellifera L.) using proboscis extension reflex conditioning. J. Insect Behav. 13: 87–101CrossRefGoogle Scholar
  20. MILANI, N. 1999. The resistance of Varroa jacobsoni Oud. to acaracides. Apidologie 30: 229–234.CrossRefGoogle Scholar
  21. Rothenbuhler, W. C. 1964. Behavior genetics of nest cleaning in honey bees. I. Responses of four inbred lines to disease-killed brood. Anim. Behav 12: 578–583.Google Scholar
  22. Spivak, M. 1996. Honey bee hygienic behavior and defense against Varroa jacobsoni. Apidologie 27: 245–260.CrossRefGoogle Scholar
  23. Spivak, M., and Reuter, G. S. 1998. Performance of hygienic honey bee colonies in a commercial apiary. Apidologie 29: 291–302.CrossRefGoogle Scholar
  24. SPIVAK, M., and REUTER, G. S. 2001a. Resistance to American foulbrood disease by honey bee colonies, Apis mellifera, bred for hygienic behavior. Apidologie 32: 555–565.CrossRefGoogle Scholar
  25. SPIVAK, M., and REUTER, G. S. 2001b. Varroa jacobsoni infestation in untreated honey bee (Hymenoptera: Apidae) colonies selected for hygienic behavior. J. Econ. Entomol. 94: 326–331.Google Scholar
  26. SPIVAK, M., MASTERMAN, R., ROSS, R., and MESCE, K. A. 2003. Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. J. Neurobiol. 55: 341–354.PubMedCrossRefGoogle Scholar
  27. Visscher P. K. 1983. The honeybee way of death: necrophoric behavior in Apis mellifera colonies. Anim. Behav. 31:1790–1801.CrossRefGoogle Scholar
  28. WALLNER A. 1999. Varroacides and their determination in bee products. Apidologie 30: 235– 248CrossRefGoogle Scholar
  29. Wilson, E. O., Durlach, N. I., and Roth, L. M. 1958. Chemical releasers of necrophoric behavior in ants. Psyche. 65: 108–114CrossRefGoogle Scholar
  30. Wilson-Rich, N., Spivak, M., Fefferman, N. H., and Starks, P. T. 2009. Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 54: 405–423PubMedCrossRefGoogle Scholar
  31. WOODROW, A. W., and HOLST, E. C. 1942. The mechanism of colony resistance to American foulbrood. J. Econ. Entomol. 35: 327–330.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jodi A. I. Swanson
    • 1
  • Baldwyn Torto
    • 2
  • Stephen A. Kells
    • 1
  • Karen A. Mesce
    • 1
  • James H. Tumlinson
    • 3
  • Marla Spivak
    • 1
  1. 1.Department of EntomologyUniversity of MinnesotaSt. PaulUSA
  2. 2.International Centre of Insect Physiology and EcologyNairobiKenya
  3. 3.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations