Journal of Chemical Ecology

, Volume 35, Issue 8, pp 861–870 | Cite as

Alkyldimethylpyrazines in the Defensive Spray of Phyllium westwoodii: A First for Order Phasmatodea

  • Aaron T. Dossey
  • Marco Gottardo
  • John M. Whitaker
  • William R. Roush
  • Arthur S. Edison
Article

Abstract

Phyllium westwoodii is a phasmid insect (Order Phasmatodea) belonging to the Family Phylliidae (leaf insects). These rather large and ornate creatures are known for their morphological resemblance to plant leaves for camouflage. Pyrazines are a common class of compounds used or produced by a wide variety of organisms, even humans. When an individual of P. westwoodii is disturbed, it sprays an opaque liquid from a pair of prothoracic glands, which are utilized by other phasmid species for defense. The current study has found that this liquid contains glucose and a mixture of 3-isobutyl-2,5-dimethylpyrazine, 2,5-dimethyl-3-(2-methylbutyl)pyrazine, and 2,5-dimethyl-3-(3-methylbutyl)pyrazine. This is the first report of pyrazines found in the defensive gland spray of phasmid insects, and the first chemical analysis of glandular material from family Phylliidae.

Keywords

Insect Phyllium westwoodii Phasmatodea Phasmid Phylliidae Chemical defense Dimethyl alkylpyrazine 3-isobutyl-2,5-dimethylpyrazine 2,5-dimethyl-3-(2-methylbutyl)pyrazine 2,5-dimethyl-3-(3-methylbutyl)pyrazine Glucose 

Supplementary material

10886_2009_9666_MOESM1_ESM.doc (2.1 mb)
Supplemental Material 1S1 EIMS database matching data for natural pyrazines 1, 2, and 3 from Phyllium westwoodii defensive spray; S2–S5) 2D COSY, TOCSY, HSQC, and HMBC spectra of P. westwoodii defensive spray, S6) Alkyl 1H -aromatic 13C expansion of HMBC spectra from synthetic compounds 1, 2, and 3; and S7) A video illustrating the defensive behavior of P. westwoodii. (DOC 2184 kb)
Supplemental Material 1

(WMV 680 kb)

References

  1. ADAMS T. B., DOULL J., FERON V. J., GOODMAN J. I., MARNETT L. J., MUNRO I. C., NEWBERNE P. M., PORTOGHESE P. S., SMITH R. L., WADDELL W. J., and WAGNER B. M. 2002. The FEMA GRAS assessment of pyrazine derivatives used as flavor ingredients. Flavor and Extract Manufacturers Association. Food Chem. Toxicol. 40:429–51.Google Scholar
  2. ARNOLDI A., ARNOLDI C., BALDI O., and GRIFFINI A. 1988. Flavor components in the Maillard reaction of different amino acids with fructose in cocoa butter water — qualitative and quantitative analysis of pyrazines. J. Agric. Food Chem. 36:988–992.CrossRefGoogle Scholar
  3. BEDFORD G. O. 1978. Biology and ecology of the Phasmatodea. Annu. Rev. Entomol. 23:125–149.CrossRefGoogle Scholar
  4. BLUM M. S. 1981. Chemical Defenses of Arthropods. New York: Academic Press. xii, 562 p. p.Google Scholar
  5. BOUCHARD P., HSIUNG C. C., and YAYLAYAN V. A. 1997. Chemical analysis of defense secretions of Sipyloidea sipylus and their potential use as repellents against rats. J. Chem. Ecol. 23:2049–2057.CrossRefGoogle Scholar
  6. BREY W. W., EDISON A. S., NAST, R. E., ROCCA J. R., SAHA S., and WITHERS R. S. 2006. Design, construction, and validation of a 1-mm triple-resonance high-temperature-superconducting probe for NMR. J. Magn. Reson. 179:290–3.PubMedCrossRefGoogle Scholar
  7. BROWN W. V. and MOORE B. P. 1979. Volatile secretory products of an australian formicine ant of the genus Calomyrmex (Hymenoptera: Formicidae). Insect Biochem. 9:451–460.CrossRefGoogle Scholar
  8. BURSE A., SCHMIDT A., FRICK S., KUHN J., GERSHENZON J., and BOLAND W. 2007. Iridoid biosynthesis in Chrysomelina larvae: Fat body produces early terpenoid precursors. Insect Biochem. Molec. Biol. 37:255–265.CrossRefGoogle Scholar
  9. CARLBERG U. 1985a. Chemical defense in Anisomorpha buprestoides (Houttuyn in Stoll) (Insecta, Phasmida). Zool. Anz. 215:177–188.Google Scholar
  10. CARLBERG U. 1985b. Chemical defense in Extatosoma tiaratum (Macleay) (Insecta, Phasmida). Zool. Anz. 214:185–192.Google Scholar
  11. CARLBERG U. 1986. Chemical defense in Sipyloidea sipylus (Westwood) (Insecta, Phasmida). Zool. Anz. 217:31–38.Google Scholar
  12. CARLBERG U. 1987. Chemical defense in Phasmida vs Mantodea (Insecta). Zool. Anz. 218:369–373.Google Scholar
  13. CAVILL G. W. K. and HOUGHTON E. 1974. Some pyrazine derivatives from Argentine ant, Iridomyrmex humilis. Aust. J. Chem. 27:879–889.Google Scholar
  14. CHOW Y. S. and LIN Y. M. 1986. Actinidine, a defensive secretion of stick insect, Megacrania alpheus Westwood (Orthoptera, Phasmatidae). J. Entomol. Sci. 21:97–101.Google Scholar
  15. CROSS J. H., BYLER R. C., RAVID U, SILVERSTEIN RM, ROBINSON SW, BAKER PM, SABINODEOLIVEIRA J, JUTSUM AR, and CHERRETT JM. 1979. Major domponent of the trail pheromone of the leaf-cutting ant, Atta sexdens rubropilosa Forel — 3-Ethyl-2,5-dimethylpyrazine. J. Chem. Ecol. 5:187–203.CrossRefGoogle Scholar
  16. DICKSCHAT J. S., REICHENBACH H., WAGNER-DOBLER I., and SCHULZ S. 2005a. Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. Eur. J. Org. Chem. 19:4141–4153.Google Scholar
  17. DICKSCHAT J. S., WAGNER-DOBLER I., and SCHULZ S. 2005b. The chafer pheromone buibuilactone and ant pyrazines are also produced by marine bacteria. J. Chem. Ecol. 31:925–947.CrossRefGoogle Scholar
  18. DOSSEY A. T., WALSE S. S., CONLE O. V., and EDISON A. S. 2007. Parectadial, a monoterpenoid from the defensive spray of Parectatosoma mocquerysi. J. Nat. Prod. 70:1335–1338.PubMedCrossRefGoogle Scholar
  19. DOSSEY A. T., WALSE S. S., and EDISON A. S. 2008. Developmental and geographical variation in the chemical defense of the walkingstick insect Anisomorpha buprestoides. J. Chem. Ecol. 34:584–590.PubMedCrossRefGoogle Scholar
  20. DOSSEY A. T., WALSE S. S., ROCCA J. R., and EDISON A. S. 2006. Single insect NMR: a new tool to probe chemical biodiversity. ACS Chem. Biol. 1:511–4.PubMedCrossRefGoogle Scholar
  21. EISNER, MORGAN R. C., ATTYGALLE A. B., SMEDLEY S. R., HERATH K. B., and MEINWALD J. 1997. Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). J. Exp. Biol. 200:2493–500.Google Scholar
  22. EISNER T. 1965. Defensive spray of a phasmid insect. Science 148:966.PubMedCrossRefGoogle Scholar
  23. FELD B. K., PASTEELS J. M., and BOLAND W. 2001. Phaedon cochleariae and Gastrophysa viridula (Coleoptera : Chrysomelidae) produce defensive iridoid monoterpenes de novo and are able to sequester glycosidically bound terpenoid precursors. Chemoecol. 11:191–198.CrossRefGoogle Scholar
  24. FURSTNER A., LEITNER A., MENDEZ M., and KRAUSE H. 2002. Iron-catalyzed cross-coupling reactions. J. Am. Chem. Soc. 124:13856–13863.PubMedCrossRefGoogle Scholar
  25. HENRY G. M. 1922. Stridulation in the leaf insect. Spolia Zeylan. 12:217–219.Google Scholar
  26. HO H. Y. and CHOW Y. S. 1993. Chemical identification of defensive secretion of stick insect, Megacrania tsudai Shiraki. J. Chem. Ecol. 19:39–46.CrossRefGoogle Scholar
  27. KUNERT M., SOE A., BARTRAM S., DISCHER S., TOLZIN-BANASCH K., NIE, L., DAVID A., PASTEELS J., and BOLAND W. 2008. De novo biosynthesis versus sequestration: A network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. Insect Biochem. Molec. Biol. 38:895–904.CrossRefGoogle Scholar
  28. LAURENT P., BRAEKMAN J. C., DALOZE D., and PASTEELS J. 2003. Biosynthesis of defensive compounds from beetles and ants. Eur. J. Org. Chem. 15:2733–2743.Google Scholar
  29. LOVE B. E. and JONES E. G. 1999. The use of salicylaldehyde phenylhydrazone as an indicates for the titration of organometallic reagents. J. Org. Chem. 64:3755–3756.PubMedCrossRefGoogle Scholar
  30. MAGA J. A. and SIZER C. E. 1973. Pyrazines in foods — Review. J. Agric. Food Chem. 21:22–30.CrossRefGoogle Scholar
  31. MEINWALD J., CHADHA M. S., HURST J. J., and EISNER T. 1962. Defense echanisms of arthropods .9. Anisomorphal, the secretion of a phasmid insect. Tetrahedron Lett. 1:29–33.Google Scholar
  32. MEINWALD J., HAPP G. M., LABOWS J., and EISNER T. 1966. Cyclopentanoid terpene biosynthesis in a phasmid insect and in catmint. Science 151:79–80.PubMedCrossRefGoogle Scholar
  33. MOORE B. P., BROWN W. V., and ROTHSCHILD M. 1990. Methyalkylpyrazines in aposematic insects. Chemoecol. 1:43–51.CrossRefGoogle Scholar
  34. SCHMEDA-HIRSCHMANN G. 2006. 4-Methyl-1-hepten-3-one, the defensive compound from Agathemera elegans (Philippi) (Phasmatidae) insecta. Z. Naturforsch. C - J. Biosci. 61:592–594.Google Scholar
  35. SCHNEIDER C. O. 1934. Las emanaciones del chinchemayo Paradoxomorpha crassa. Rev. Chil. Hist. Nat. 38:44–46.Google Scholar
  36. SMITH R. M., BROPHY J. J., CAVILL G. W. K., and DAVIES N. W. 1979. Iridodials and nepetalactone in the defensive secretion of the coconut stick insect, Graeffea crouani. J. Chem. Ecol. 5:727–735.CrossRefGoogle Scholar
  37. STEIN S., MIROKHIN Y., TCHEKHOVSKOI D., and MALLARD G. 1987–2002. NIST Mass Spectral Search Program. Version July 1, 2002 a build. Fairfield, CA: National Institute of Standards and Technology, Standard Reference Data Program, ChemSW (Chemistry Software for Windows).Google Scholar
  38. TENGO J., BERGSTROM G., BORGKARLSON A. K., GROTH I., and FRANCKE W. 1982. Volatile dompounds from cephalic secretions of females in 2 cleptoparasite bee genera, Epeolus (Hym, Anthophoridae) and Coelioxys (Hym,Megachilidae). Z. Naturforsch.C-a J. Biosci. 37:376–380.Google Scholar
  39. TERRY M. D. and WHITING M. F. 2005. Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics 21:240–257.CrossRefGoogle Scholar
  40. THOMAS M. C. 2001. The twostriped walkingstick, Anisomorpha buprestoides (Stoll), (Phasmatodea: Pseudophasmatidae). Fla. Dept. Agri. & Consumer Svcs. Division of Plant Industry — Entomology, Circular 408.Google Scholar
  41. TILGNER E. H. 2002. Systematics of Phasmida. PhD Dissertation. University of Georgia, Athens.Google Scholar
  42. ULRICH E. L., AKUTSU H., DORELEIJERS J. F., HARANO Y., IOANNIDIS Y. E., LIN J., LIVNY M., MADING S., MAZIUK D., MILLER Z., NAKATANI E., SCHULTE C. F., TOLMIE D. E., KENT WENGER R., YAO H., and MARKLEY J. L. 2008. BioMagResBank. Nucleic Acids Res. 36:D402–8.PubMedCrossRefGoogle Scholar
  43. WEDMANN S., BRADLER S., and RUST J. 2007. The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior. Proc. Natl. Acad. Sci. USA 104:565–569.PubMedCrossRefGoogle Scholar
  44. WELTY W. M., MARSHALL R. T., GRUN I. U., and ELLERSIECK M. R. 2001. Effects of milk fat, cocoa butter, or selected fat replacers on flavor volatiles of chocolate ice cream. J. Dairy Sci. 84:21–30.PubMedCrossRefGoogle Scholar
  45. WHEELER J. W. and BLUM M. S. 1973. Alkylpyrazine alarm pheromones in ponerine ants. Science 182:501–503.PubMedCrossRefGoogle Scholar
  46. WOOD-MASON J. 1875. On new or little-known species of Phasmidae, with a brief preliminary notice of the occurence of a clasping apparatus in the males throughout the family. J. Asiatic Soc. Bengal 44:215–220.Google Scholar
  47. ZHANG F., DOSSEY A. T., ZACHARIAH C., EDISON A. S., and BRUSCHWEILER R. 2007. Strategy for automated analysis of dynamic metabolic mixtures by NMR. Application to an insect venom. Anal. Chem. 79:7748–7752.Google Scholar
  48. ZOMPRO O. 2004. Revision of the genera of the Areolatae, including the status of Timema and Agathemera (Insecta, Phasmatodea). Weiler, Germany: Verlag Goecke & Evers. 327 p.Google Scholar
  49. ZOMPRO O. and GRÖSSER D. 2003. A generic revision of the insect order Phasmatodea: The genera of the areolate stick insect family Phylliidae (walking leaves) (Insecta, Orthoptera). Spixiana 26:129-141.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aaron T. Dossey
    • 1
  • Marco Gottardo
    • 2
  • John M. Whitaker
    • 3
  • William R. Roush
    • 3
  • Arthur S. Edison
    • 1
    • 4
    • 5
  1. 1.Department of Biochemistry & Molecular BiologyUniversity of FloridaGainesvilleUSA
  2. 2.Museo Civico di Storia Naturale di FerraraFerraraItaly
  3. 3.Department of Chemistry, Scripps FloridaJupiterUSA
  4. 4.McKnight Brain InstituteUniversity of FloridaGainesvilleUSA
  5. 5.National High Magnetic Field LaboratoryUniversity of FloridaGainesvilleUSA

Personalised recommendations