Journal of Chemical Ecology

, Volume 35, Issue 7, pp 844–850

Chemotaxis Disruption in Pratylenchus Scribneri by Tall Fescue Root Extracts and Alkaloids

  • Ada A. Bacetty
  • Maurice E. Snook
  • Anthony E. Glenn
  • James P. Noe
  • Padmaja Nagabhyru
  • Charles W. Bacon


Tall fescue (Festuca arundinacea) forms a symbiotic relationship with the clavicipitalean fungal endophyte Neotyphodium coenophialum. Endophyte-infected grass is tolerant to nematode, but the factors responsible are unknown. One objective of this work was to determine if root extracts of tall fescue effected chemoreceptor activity of Pratylenchus scribneri by using an in vitro chemoreception bioassay. Another objective was to determine if specific ergot alkaloids (ergovaline, ergotamine, a-ergocryptine, ergonovine), and loline alkaloids, all produced by the fungal endophyte, altered chemotaxis with this bioassay. Methanolic extract from roots altered chemotaxis activities in this nematode but only from roots of plants cultured 45 ≥ d, which repelled nematodes. Extracts prepared from noninfected grasses were attractants. This assay indicated that the alkaloids were either repellents or attractants. N-formylloline was an attractant at concentrations of 20 μg/ml and lower, while at higher concentrations it was a repellent. Ergovaline, the major ergot alkaloid produced by the endophyte, was repellent at both high and low concentrations and caused complete death of the nematodes.


Chemoreception Ergovaline Ergot alkaloids Festuca arundinacea Fungal endophyte Loline alkaloids Neotyphodium coenophialum Pratylenchus scribneri Tall fescue 


  1. AGEE, C. S., and HILL, N. S. 1994. Ergovaline variability in Acremonium-infected tall fescue due to environment and plant genotype. Crop. Sci. 34: 221–226.CrossRefGoogle Scholar
  2. BACETTY, A. A. 2008. Nematoxicity of Neotyphodium-infected tall fescue alkaloids and other secondary metabolites on the plant-parasitic nematode Pratylenchus scribneri. PhD dissertation. University of Georgia, Athens.Google Scholar
  3. BACETTY, A. A., SNOOK, M. E., GLENN, A. E., BACON, C. W., NAGABHYRU, P. N., and SCHARDL, C. L. 2007. Nematotoxic effects of endophyte-infected tall fescue toxins and extracts in an in vitro bioassay using the nematode Pratylenchus scribneri, pp. 357–361, in A. J. Popay and E. R. Thom (eds.). Proc. 6th International Symposium on Fungal Endophytes of Grasses, Christchurch, NZ. New Zealand Grassland Association, Dunedin, New Zealand.Google Scholar
  4. BACON, C. W., PORTER, J. K., ROBBINS, J. D., and LUTTRELL, E. S. 1977. Epichloe typhina from toxic tall fescue grasses. Appl. Environ.Microbiol. 34: 576–581.PubMedGoogle Scholar
  5. BERNARD, E. C., GWINN, K. D., PLESS, C. D., and WILLIVER, C. D. 1997. Soil Invertebrate species diversity and abundance in endophyte-infected tall fescue pastures, pp. 125–135, in C. W. Bacon and N. S. Hill (eds.). Neotyphodium/Grass Interactions. Plenum, New York.Google Scholar
  6. BUSH, L. P., FANNIN, F. F., SIEGEL, M. R., DAHLMAN, D. L., and BURTON, H. L. 1993. Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte—grass interaction. Agri. Ecosys. Environ. 44: 81–102.CrossRefGoogle Scholar
  7. CROSS, D. L., REDMOND, L. M., and STRICKLAND, J. R. 1995. Equine fescue toxicosis: Signs and solutions. J. Anim. Sci. 73: 899–908.PubMedGoogle Scholar
  8. DENTON, C. S., BRADGETT, R. D., COOK, R., and HOBBS, P. J. 1999. Low amounts of root herbivory positively influence the rhizosphere microbial community in a perpetrate grassland soil. Soil Biol. Biochem. 31: 155–165.CrossRefGoogle Scholar
  9. DYER, D. C. 1993. Evidence that ergovaline acts on serotonin receptors. Life Sci. 53: 223–228.CrossRefGoogle Scholar
  10. GARCIA, L. R., MEHTA, P., and STERNBERG, P. W. 2001. Regulation of distinct muscle behaviors controls the C. elegans male’s copulatory spicules during mating. Cell 107: 777–788.PubMedCrossRefGoogle Scholar
  11. GLENN, A. E., BACON, C. W., PRICE, R., and HANLIN, R. T. 1996. Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88: 369–383.CrossRefGoogle Scholar
  12. GWINN, K. D., BERNARD, E. C., and PLESS, C. D. 1992. Pathogen and pest resistance in endophyte-infected tall fescue, pp. 139–145, in P. M. Gresshoff (ed.). Plant Biotechnology and Development. CRC, Boca Raton.Google Scholar
  13. HALLAM, S., SINGER, E., WARING, D., and YIN, Y. S. 2000. The C. elegans neuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 127: 4239–4252.PubMedGoogle Scholar
  14. HIATT, E. E., and HILL, N. S. 1997. Neotyphodium coenophialum mycelial protein and herbage mass effects on ergot alkaloid concentration in tall fescue. J. Chem. Ecol. 23: 2721–2736.CrossRefGoogle Scholar
  15. HINTON, D. M., and BACON, C. W. 1985. The distribution and ultrastructure of the endophyte of toxic tall fescue. Can. J. Bot. 63: 36–42.Google Scholar
  16. KIMMONS, C. A., GWINN, K. D., and BERNARD, E. C. 1990. Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Dis. 74: 757–761.CrossRefGoogle Scholar
  17. LARSON, B. T., SAMFORD, M. D., CAMDEN, J. M., PIPER, E. L., KERLEY, M. S., PATERSON, J. A., and TURNER, J. T. 1995. Ergovaline binding and activation of D2 dopamine receptors in GH4ZR7 cells. J. Anim. Sci. 73: 1396–1400.PubMedGoogle Scholar
  18. LARSON, B. T., HARMON, E. L., PIPER, E. L., GRIFFIS, L. M., and BUSH, L. P. 1999. Alkaloid binding and activation of D2 dopamine receptors in cell culture. J. Anim. Sci. 77942: 947.Google Scholar
  19. LEUCHTMANN, A., SCHMIDT, D., and BUSH, L. P. 2000. Different levels of protective alkaloids in grasses with stroma-forming and seed-transmitted Epichloë/Neotyphodium endophyes. J. Chem. Ecol. 26: 1025–1036.CrossRefGoogle Scholar
  20. LOER, C. M., and KENYON, C. 1993. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. Neuroscience 13: 5407–5417.PubMedGoogle Scholar
  21. LYONS, P. C., PLATTNER, R. D., and BACON, C. W. 1986. Occurrence of peptide and clavine ergot alkaloids in tall fescue. Science 232: 487–489.PubMedCrossRefGoogle Scholar
  22. MATTOCKS, A. R. 1986. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic, New York.Google Scholar
  23. MCGLOHON, N. E., SASER, J. N., and SHERWOOD, R. T. 1961. Investigations of plant-parasitic nematodes associated with forage crops in North Carolina. N. C. Agric. Exper. Stat. Tech. Bull. 148: 1–39.Google Scholar
  24. MEYER, S. L. F., HUETTEL, R. N., and SAYRE, R. M. 1990. Isolation of fungi from Heterodera glycines and in vitro bioassays for their antagonism to eggs. J. Nematology 22: 532–537.Google Scholar
  25. PERRY, R. N. 1996. Chemoreception in plant parasitic nematodes. Annu. Rev. Phytopathol. 34: 181–191.PubMedCrossRefGoogle Scholar
  26. ROBERTS, C. A., MAREK, S. M., NIBLACK, T. L., and KARR, A. L. 1992. Parasitic Meloidogyne and mutualistic Acremonium increase chitinase in tall fescue. J. Chem. Ecol. 18: 1107–1116.CrossRefGoogle Scholar
  27. SALMINEN, S. O., and PARWINDER, S. G. 2002. Does decreased mowing frequency enhance alkaloid production in endophytic tall fescue and perennial ryegrass? J. Chem. Ecol. 28: 939–950.PubMedCrossRefGoogle Scholar
  28. SALMINEN, S. O., PARWINDER, S. G., and QUIGLEY, M. F. 2003. Does mowing height influence alkaloid production in endophytic tall fescue and perennial ryegrass? J. Chem. Ecol. 29: 1319–1328.PubMedCrossRefGoogle Scholar
  29. SCHAFER, W. R., and KENYON, C. 1995. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375: 73–78.PubMedCrossRefGoogle Scholar
  30. SHARP, M. J., and AKINSON, H. J. 1980. Improved visualization of dopaminergic-neurons in nematodes using the glycoxilic-acid fluorescence method. Zoology 190: 273–284.Google Scholar
  31. STEWART, G. R., PERRY, R. N., and WRIGHT, D. J. 2001. Occurrence of dopamine in Pangrellus redivivus and Meloidogyne incognita. Nematology 3: 843–858.CrossRefGoogle Scholar
  32. WEINSHENKER, D. Z., GARRIGA, G., and THOMAS, J. H. 1995. Genetic and pharmalogical analysis of neurotransmitters controlling egg laying in C. elegans. Neuroscience 15: 6975–6985.PubMedGoogle Scholar
  33. WEST, C. P., IZEKOR, E., OOSTERHUIS, D. M., and ROBBINS, R. T. 1988. The effects of Acremonium coenophialum on growth and nematode infestation of tall fescue. Plant Soil 112: 3–6.CrossRefGoogle Scholar
  34. WUYTS, N., SWENNEN, R., and WAELE, D. D. 2006. Effects of plant phenylpropanoid pathy products and selected terpenoids and alkaloids on the behavior of the plant parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne. Nematology 8: 89–101.CrossRefGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  • Ada A. Bacetty
    • 1
    • 2
  • Maurice E. Snook
    • 1
  • Anthony E. Glenn
    • 1
  • James P. Noe
    • 2
  • Padmaja Nagabhyru
    • 3
  • Charles W. Bacon
    • 1
  1. 1.Toxicology & Mycotoxin Research UnitUSDA, ARS Russell Research CenterAthensUSA
  2. 2.Department of Plant PathologyUniversity of GeorgiaAthensUSA
  3. 3.Department of Plant PathologyUniversity of KentuckyLexingtonUSA

Personalised recommendations