Journal of Chemical Ecology

, Volume 35, Issue 6, pp 689–697 | Cite as

Two Regulatory Mechanisms of Monoterpenoid Pheromone Production in Ips spp. Of Bark Beetles

  • Jeremy C. Bearfield
  • Anastasia G. Henry
  • Claus Tittiger
  • Gary J. Blomquist
  • Matthew D. Ginzel


Bark beetles use aggregation pheromones to coordinate host colonization and mating. These monoterpenoid chemical signals are produced de novo in midgut cells via the mevalonate pathway, and pheromone production is induced when an adult beetle feeds on phloem of a host tree. In Ips pini, juvenile hormone (JH) III influences key regulatory enzymes along the mevalonate pathway that leads to pheromone production. In fact, topically applied JH III is sufficient to stimulate pheromone production in unfed males. In this study, we explore the influence of feeding and JH III treatment on pheromone production in male Ips confusus, the pinyon Ips. We also characterize the influence of feeding and JH III treatment on transcript levels and activity of three key enzymes involved in pheromone biosynthesis: 3-hydroxy-3-methylglutaryl-CoA (HMG) synthase (HMGS), HMG-CoA reductase (HMGR) and geranyl diphosphate synthase (GPPS). We also extend the current understanding of the regulation of pheromone biosynthesis in I. pini, by measuring the influence of feeding and JHIII treatment on enzymatic activity of HMGS and GPPS. Feeding on host phloem alone strongly induces pheromone production in male I. confusus, while JH III treatment has no effect. However, feeding and JH III both significantly up-regulate mRNA levels of key mevalonate pathway genes. Feeding up-regulates these genes to a maximum at 32 h, whereas with JH III-treatment, they are up-regulated at 4, 8, and 16 h, but return near to non-treatment levels at 32 h. Feeding, but not JH III treatment, also increases the activity of all three enzymes in I. confusus, while both feeding or treatment with JH III increase HMGS and GPPS activity in I. pini. Our data suggest that pheromone production in Ips is not uniformly controlled by JH III and feeding may stimulate the release of some other regulatory factor, perhaps a brain hormone, required for pheromone production.


Ips confusus Ips pini Pheromones Juvenile hormone Mevalonate pathway 


  1. Barkawi, L. S., Francke, W., Blomquist, G. J., and Seybold, S. J. 2003. Frontalin: de novo biosynthesis of an aggregation pheromone component by Dendroctonus spp. bark beetles (Coleoptera: Scolytidae). Insect Biochem. Mol. Biol. 33:773–788.Google Scholar
  2. Bearfield, J. C., Keeling, C. I., Young, S., Blomquist, G. J., and Tittiger, C. 2006. Isolation, endocrine regulation, and mRNA distribution of the 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) gene from the pine engraver, Ips pini (Coleoptera: Scolytidae). Insect Mol. Biol. 15:187–195.PubMedCrossRefGoogle Scholar
  3. Birch, M. C., Tilden, P .E., Wood, D. L., Browne, L. E., Young, J. C., and Silverstein, R.M. 1977. Biological activity of compounds isolated from air condensates and frass of the bark beetle, Ips confusus. J. Insect Physiol. 23:1373–1376.CrossRefGoogle Scholar
  4. Borden, J. H., Nair, K. K., and Slater, C. E. 1969. Synthetic juvenile hormone induction of sex pheromone production in Ips confusus. Science 166:1626–1627.CrossRefGoogle Scholar
  5. Browne, L. E. 1972. An emergence cage and refrigerated collector for wood-boring insects and their associates. J. Econ. Entomol. 65:1499–1501.Google Scholar
  6. Byers, J. A. and Birgersson, G. 1990. Pheromone production in a bark beetle independent of myrcene precursors in host pine species. Naturwissenschaften 77:385–387.CrossRefGoogle Scholar
  7. Casals, N., Buesa, C., Piulachs, M., Cabano, J., Marrero, P. F., Belles, X., and Hegardt, F. G. 1996. Coordinated expression and activity of 3-hydroxy-3-methyl-glutaryl coenzyme A synthase and reductase in the fat body of Blattella germanica (L.) during vitellogenesis. Insect Biochem. Molec. Biol. 26:837–843.Google Scholar
  8. Clinkenbeard K. D., Reed W. D., Mooney, R. A., and Lane, M. D. 1975. Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzyme A cycle enzymes in liver: separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. J. Biol. Chem. 250:3108–3116.PubMedGoogle Scholar
  9. Cognato, A. I. and Sperling F.A.H. 2000. Phylogeny of Ips DeGeer species (Coleoptera: Scolytidae) inferred from mitochondrial cytochrome oxidase I DNA sequence. Mol. Phylogenet. Evol. 14:445–460.PubMedCrossRefGoogle Scholar
  10. Cognato, A. I. and Vogler A. P. 2001. Exploring data interaction and nucleotide alignment in a multiple gene analysis of Ips (Coleoptera: Scolytidae). Syst. Biol. 50, 758–780.PubMedCrossRefGoogle Scholar
  11. Gilg, A. B., Bearfield, J. C., Tittiger, C., Welch, W. H., and Blomquist, G. J. 2005. Isolation and functional expression of an animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. Proc. Natl. Acad. Sci. USA 102:9760–9765.PubMedCrossRefGoogle Scholar
  12. Hall, G. M., Tittiger, C., Andrews, G. L., Mastick, G. S., Kuenzli, M., Luo, X., Seybold, S. J., and Blomquist, G. J. 2002a. Midgut tissue of male pine engraver, Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo. Naturwissenschaften 89:79–83.PubMedCrossRefGoogle Scholar
  13. Hall, G. M., Tittiger, C., Blomquist, G. J., Andrews, G. L., Mastick, G. S., Barkawi, L. S., Bengoa, C., and Seybold, S. J. 2002b. Male Jeffrey pine beetle, Dendroctonus jeffreyi, synthesizes the pheromone component frontalin in anterior midgut tissue. Insect Biochem. Molec. Biol. 11:1525–1532.CrossRefGoogle Scholar
  14. Hughes, P. R. and Renwick, J.A.A. 1977. Neural and hormonal control of pheromone biosynthesis in the bark beetle, Ips paraconfusus. Physiol. Entomol. 2:117–123.CrossRefGoogle Scholar
  15. Ivarsson, P., Schlyter, F., and Birgersson, G. 1993. Demonstration of de novo pheromone biosynthesis in Ips duplicatus (Coleoptera: Scolytidae): inhibition of ipsdienol and E-myrcenol production by compactin. Insect Biochem. Mol. Biol. 23:655–662.CrossRefGoogle Scholar
  16. Ivarsson, P., Tittiger, C., Blomquist, C., Borgeson, C. E., Seybold, S. J., and Blomquist, G. J. 1998. Pheromone precursor synthesis is localized in the metathorax of Ips paraconfusus Lanier (Coleoptera: Scolytidae). Naturwissenschaften 85:507–511.CrossRefGoogle Scholar
  17. Keeling, C. I., Blomquist, G. J., and Tittiger, C. 2004. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae). Naturwissenschaften 91:324–328.PubMedCrossRefGoogle Scholar
  18. Keeling, C. I., Bearfield, J. C., Young, S., Blomquist, G. J., and Tittiger, C. 2006. Effects of juvenile hormone on gene expression in the pheromone-producing midgut of the pine engraver beetle. Insect Mol. Biol. 15:207–216.PubMedCrossRefGoogle Scholar
  19. Lanier, G. N. and Cameron, E. A. 1969. Secondary sexual characters in the North American species of the genus Ips (Coleoptera: Scolytidae). Can. Entomol. 101:862–870.CrossRefGoogle Scholar
  20. Livak K. J. and Schmittgen T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408.PubMedCrossRefGoogle Scholar
  21. Lu, F. 1999. Origin and endocrine regulation of pheromone biosynthesis in the pine bark beetles, Ips pini (Say) and Ips paraconfusus Lanier (Coleoptera: Scolytidae). Ph.D. thesis. Univ. of Nevada, Reno. pp. 152.Google Scholar
  22. Sandstrom, P., Ginzel, M. D., Bearfield, J. C., Welch, W. H., Blomquist, G. J., and Tittiger, C. 2008. Myrcene hydroxylases do not determine enantiomeric composition of pheromonal ipsdienol in Ips spp. J. Chem. Ecol. 34:1584–1592.PubMedCrossRefGoogle Scholar
  23. Scharnagl, H., März, W., Schliack, M., Löser, R., and Werner, G. 1995. A novel assay for cytosolic 3-hydroxy-3-methylglutaryl-coenzyme A synthase activity using reversed-phase ion-pair chromatography: demonstration that Lifibrol (K12.148) modulates the enzyme activity. J. Lipid. Res. 36:622–627.PubMedGoogle Scholar
  24. Schiefelbein D., Goren I., Fisslthaler B., Schmidt H., Geisslinger G., Pfeilschifter J., and Frank S. 2008. Biphasic regulation of HMG-CoA reductase expression and activity during wound healing and its functional role in the control of keratinocyte angiogenic and proliferative responses. J. Biol. Chem. 283:15479–90.PubMedCrossRefGoogle Scholar
  25. Seybold, S. J., Ohtsuka, T., Wood, D.L., and Kubo, I., 1995a. The enantiomeric composition of ipsdienol: a chemotaxonomic character for North American populations of Ips spp. in the pini subgeneric group (Coleoptera: Scolytidae). J. Chem. Ecol. 21:995–1016.CrossRefGoogle Scholar
  26. Seybold, S. J., Quilici, D. R., Tillman, J. A., Vanderwel, D., Wood, D. L., and Blomquist, G. J. 1995b. De novo biosynthesis of the aggregation pheromone components ipsenol and ipsdienol by the pine bark beetles Ips paraconfusus Lanier and Ips pini (Say) (Coleoptera: Scolytidae). Proc. Natl. Acad. Sci. USA 92:8393–8397.PubMedCrossRefGoogle Scholar
  27. Sokal, R. R. and Rohlf, F. J. 1995. Biometry: the principles and practice of statistics in biological research. 3rd edition. W. H. Freeman and Co.: New York. 887 pp.Google Scholar
  28. STATSOFT, INC. 2005. STATISTICA (data analysis software system), version 7.1.
  29. Tillman, J. A., Holbrook, G. L., Dallara, P. L., Schal, C., Wood, D. L., Blomquist, G. J., and Seybold, S. J. 1998. Endocrine regulation of de novo aggregation pheromone biosynthesis in the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Insect Biochem. Mol. Biol. 28:705–15.CrossRefGoogle Scholar
  30. Tillman, J. A., LU, F., Goddard, L. M., Donaldson, Z., Dwinell, S. C., Tittiger, C., Hall, G. M., Storer, A. J., Blomquist, G. J., and Seybold, S. J. 2004. Juvenile hormone regulates de novo isoprenoid aggregation pheromone biosynthesis in pine bark beetles, Ips spp. (Coleoptera: Scolytidae), through transcriptional control of HMG-CoA reductase. J. Chem. Ecol. 30:2459–2494.PubMedCrossRefGoogle Scholar
  31. Tittiger, C., Blomquist, G. J., Ivarsson, P., Borgeson, C. E., and Seybold, S. J. 1999. Juvenile hormone regulation of HMG-R gene expression in the bark beetle Ips paraconfusus (Coleoptera: Scolytidae): implications for male aggregation pheromone biosynthesis. Cell. Mol. Life Sci. 55:121–127.PubMedCrossRefGoogle Scholar
  32. Tittiger, C., O'Keeffe, C., Bengoa, C. S., Barkawi, L. S., Seybold, S. J., and Blomquist, G. J. 2000. Isolation and endocrine regulation of an HMG-CoA synthase cDNA from the male Jeffrey pine beetle, Dendroctonus jeffreyi (Coleoptera: Scolytidae). Insect Biochem. Mol. Biol. 30:1203–1211.PubMedCrossRefGoogle Scholar
  33. Tittiger, C., Barkawi, L. S., Bengoa, C. S., Blomquist, G. J., and Seybold, S. J. 2003. Structure and juvenile hormone-mediated regulation of the HMG-CoA reductase gene from the Jeffrey pine beetle, Dendroctonus jeffreyi. Mol. Cell. Endocrinol. 199:11–21.PubMedCrossRefGoogle Scholar
  34. Zhang D. and Poulter C. D. 1993. Analysis and purification of phosphorylated isoprenoids by reversed-phase HPLC. Anal. Biochem. 213:356–361.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeremy C. Bearfield
    • 1
  • Anastasia G. Henry
    • 2
  • Claus Tittiger
    • 1
  • Gary J. Blomquist
    • 1
  • Matthew D. Ginzel
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Nevada, RenoRenoUSA
  2. 2.Tetrad Program, Department of Cell BiologyUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Department of EntomologyPurdue UniversityWest LafayetteUSA

Personalised recommendations