Journal of Chemical Ecology

, Volume 35, Issue 6, pp 715–723 | Cite as

(2S,8Z)-2-Butyroxy-8-heptadecene: Major Component of the Sex Pheromone of Chrysanthemum Gall Midge, Rhopalomyia longicauda

  • Ya-Jia Liu
  • David Hall
  • Jerry Cross
  • Dudley Farman
  • Lakmali Amarawardana
  • Qing-Ran Liu
  • Xiong-Kui He
Article

Abstract

The sex pheromone of the chrysanthemum gall midge, Rhopalomyia longicauda (Diptera: Cecidomyiidae), the most important insect pest in commercial plantations of chrysanthemum, Dendranthema morifolium (Ramat.) Tzvel., in China, was identified, synthesized, and field-tested. Volatile chemicals from virgin females and males were collected on Porapak in China and sent to the United Kingdom for analysis. Coupled gas chromatographic–electroantennographic detection (GC-EAG) analysis of volatile collections from females revealed two compounds that elicited responses from antennae of males. These compounds were not present in collections from males. The major EAG-active compound was identified as 2-butyroxy-8-heptadecene by gas chromatographic (GC) retention indices, mass spectra, in both electron impact and chemical ionization modes, hydrogenation, epoxidation, and derivatization with dimethyldisulfide. The lesser EAG-active compound was identified as the corresponding alcohol. The ratio of butyrate to alcohol in the collections was 1:0.26. Racemic (Z)-8-heptadecen-2-ol and the corresponding butyrate ester were synthesized from (Z)-7-hexadecenyl acetate, and the synthetic compounds found to have identical GC retention indices and mass spectra to those of the natural, female-specific components. Analysis of the volatile collections on an enantioselective cyclodextrin GC column showed the natural pheromone contained (2S,8Z)-2-butyroxy-8-heptadecene. Field tests showed that rubber septa containing racemic (Z)-2-butyroxy-8-heptadecene were attractive to R. longicauda males. The (naturally occurring) S-enantiomer was equally as attractive as the racemate, while the R-enantiomer was not attractive to males, and did not inhibit the activity of the S-enantiomer. The attractiveness of the butyrate was significantly reduced by the presence of even small amounts of the corresponding alcohol.

Keywords

Chrysanthemum gall midge Rhopalomyia longicauda Cecidomyiidae Sex pheromone (2S,8Z)-2-butyroxy-8-heptadecene (2S,8Z)-8-heptadecen-2-ol Field trapping 

Notes

Acknowledgements

This work was funded by the National Science and Technology Support Projects in the 11th Five-year Plan of China (No. 2006BAD15B03, 2006BAD08A03 and 2006BAD02A16-4) and in part by the UK Horticultural Development Council and the Worshipful Company of Fruiterers. We thank Dr. K. M. Harris (former director of International Institute of Entomology, UK) and Prof. Junichi Yukawa (Entomological Laboratory, Faculty of Agriculture, Kyushu University, Japan) for identifying this insect species.

References

  1. Bierl-Leonhardt, B. A., DeVilbiss, E. D., and Plimmer, J. R. 1980. Location of double-bond position in long-chain aldehydes and acetates by mass spectral analysis of epoxide derivatives. J. Chromatogr. Sci. 18:364–367.Google Scholar
  2. Bruce, T. J. A., Hooper, A. M., Ireland, L., Jones, O. T., Martin, J. L., Smart, L. E., Oakley, J., and Wadhams, L. J. 2007. Development of a pheromone trap monitoring system for orange wheat blossom midge, Sitodiplosis mosellana, in the UK. Pest Man. Sci., 63:49–56.CrossRefGoogle Scholar
  3. Buser, H. R., Arn, H., Guerin, P., and Rauscher, S. 1983. Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adduct. Anal. Chem. 55(6):818–822.CrossRefGoogle Scholar
  4. Cheng, F. Z., Yang, Z. Z., Liu, Z. F., and Yang W. B. 1990. Studies of the biology and control of the chrysanthemum gall midge, Epirmgiu sp. Baoding Sci. Tech. Inform. 1:30–35. (in Chinese).Google Scholar
  5. Corey, E. J. and Suggs, J. W. 1975. Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett. 16:2647–2650.CrossRefGoogle Scholar
  6. Cork, A., Beevor, P. S., Gough, J. E., and Hall, D. R. 1990. Gas chromatography linked to electroantennography: a versatile technique for identifying insect semiochemicals, pp. 271–279, in A. R. McCaffery and I. D. Wilson (eds.). Chromatography and Isolation of Insect Hormones and Pheromones. Plenum, London.Google Scholar
  7. Cross, J. V. and Hall, D. R. 2005. Pheromones. PCT/GB2005/002504.Google Scholar
  8. Cross, J., Baroffio, C., Grassi, A., Hall, D., Labanowska, B., Milenković, S., Nilsson, T., Shternshis, M., Tornéus, C., Trandem, N., and Vétek, G. 2008. Monitoring raspberry cane midge, Resseliella theobaldi, with sex pheromone traps: results from 2006, pp. 11–17, in Ch. Linder and J. V. Cross (eds.). Integrated Plant Protection in Soft Fruits. IOBC/WPRS Bulletin 39.Google Scholar
  9. Cross, J. V., Hall, D. R., Shaw, P., and Anfora, G. 2009. Exploitation of the sex pheromone of apple leaf midge Dasineura mali Kieffer (Diptera: Cecidomyiidae): Part 2. use of sex pheromone traps for pest monitoring. Crop Prot. 28:128–133.Google Scholar
  10. Gries, R., Gries, G., Khaskin, G., King, G. G. S., Olfert, O., Kaminski, L., Lamb, R. G., and Bennett, R. 2000. Sex pheromone of the orange wheat blossom midge, Sitodiplosios mosella. Naturwissenschaften 87:450–454.PubMedCrossRefGoogle Scholar
  11. Gries, R., Khaskin, G., Daroogheh, H., Mart, C., Karadag, S., Kubilay Er, M., Britton, R., and Gries, G. 2006. (2S,12Z)-2-Acetoxy-12-heptadecene: major sex pheromone component of pistachio twig borer, Kermania pistaciella. J. Chem. Ecol. 32:2667–2677.PubMedCrossRefGoogle Scholar
  12. Hall, D. R., Farman, D. I., Cross, J. V., Pope, T. W., Ando, T., and Yamamoto, M. 2009. (S)-2-Acetoxy-5-undecanone, female sex Pheromone of raspberry cane midge, Resseliella theobaldi (Barnes). J. Chem. Ecol. 35:230–242.PubMedCrossRefGoogle Scholar
  13. Hillbur, Y., El-Sayed, A., Bengtsson, M., Lofquist, J., Biddle, A., Plass, E., and Francke, W. 2000. Laboratory and field study of the attraction of male pea midge, Contarinia pisi, to synthetic sex pheromone components. J. Chem. Ecol. 26:1941–1952.CrossRefGoogle Scholar
  14. Jorgenson, M. 1970. Preparation of ketones from the reaction of organolithium reagents with carboxylic acids. Org. React. 18:1–97.Google Scholar
  15. Leonhardt, B. A., and Devilbiss, E. D. 1985. Separation and double-bond determination on nanogram quantities of aliphatic monounsaturated alcohols, aldehydes and carboxylic acid methyl esters. J. Chromatogr. 322:484–490.CrossRefGoogle Scholar
  16. Liu, Z. F., Yang, W. B., Cheng, F. Z., and Yang, Z. Z. 1987. Preliminary report on the chrysanthemum gall midge. Plant Protection Technology and Extension 2: 34–36. (in Chinese).Google Scholar
  17. Liu, H. Y., Wu, R. H., Lu, C. T., Song, F. X., Yin, X. M., Wang, T. I., Zhao, Z. W., and Zhang, B. H. 2003. Field study of the chemical control of the chrysanthemum gall midge. Chinese Traditional and Herbal Drugs 34:181–183. (in Chinese with English abstract).Google Scholar
  18. Molnár, B., Kárpáti, Z., Szőcs, G., and Hall, D. R. 2009. Identification of female-produced sex pheromone of the honey locust gall midge, Dasineura gleditchiae. J. Chem Ecol. doi: 10.1007/s10886-009-9641-5.
  19. Sato, S., Ganaha, T., Yukawa, J., Liu, Y. J., Xu, H.L., Paik, J.C., Uechi, N., and Mishima, M. 2009. A new species, Rhopalomyia longicauda (Diptera: Cecidomyiidae), inducing large galls on wild and cultivated Chrysanthemum (Asteraceae) in China and on Jeju Island, Korea. Appl. Entomol. Zool. 44:61–72.CrossRefGoogle Scholar
  20. Suckling, D. M., Walker, J. T. S., Shaw, P. W., Manning, L. -A., Lo, P., Wallis, R., Bell, V., Sandanayaka, W. R. M., Hall, D. R., Cross, J. V., and El-Sayed, A. M. 2007. Trapping Dasinuera mali (Diptera: Cecidomyiidae) in apples. J. Econ. Entomol. 100:745–751.PubMedCrossRefGoogle Scholar
  21. Wu, R. H., Liu, H. Y., Wang, F., Lu, C. H. T., and Yin, X. M. 2007. Integrated control techniques of chrysanthemum gall midge. Henan Agri. Sci. 7:95–98. (in Chinese).Google Scholar
  22. Xiao, L., and Kitazume, T. 1997. Optically active propargylic and allylic alcohols with a difluoromethyl group at the terminal carbon. Tetrahedron Asymm. 21:3597–3601.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ya-Jia Liu
    • 1
  • David Hall
    • 2
  • Jerry Cross
    • 3
  • Dudley Farman
    • 2
  • Lakmali Amarawardana
    • 2
  • Qing-Ran Liu
    • 4
  • Xiong-Kui He
    • 1
  1. 1.Department of Applied Chemistry, College of ScienceChina Agricultural UniversityBeijingChina
  2. 2.Natural Resources InstituteUniversity of GreenwichKentUK
  3. 3.East Malling ResearchKentUK
  4. 4.Anguo Plant Protection StationHebeiChina

Personalised recommendations