Journal of Chemical Ecology

, Volume 35, Issue 6, pp 664–678 | Cite as

Performance and Secondary Chemistry of Two Hybrid Aspen (Populus tremula L. x Populus tremuloides Michx.) Clones in Long-Term Elevated Ozone Exposure

  • E. Häikiö
  • M. Makkonen
  • R. Julkunen-Tiitto
  • J. Sitte
  • V. Freiwald
  • T. Silfver
  • V. Pandey
  • E. Beuker
  • T. Holopainen
  • E. Oksanen


The effects of moderately elevated ozone (ca. 35 ppb) on the growth and secondary chemistry of the leaves of two soil-grown Finnish hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clones with different ozone sensitivities were studied at an open-air exposure field in Kuopio, Finland. Stomatal conductance, photosynthetic rate, and chlorophyll fluorescence were measured during the third growing season. Foliar phenolic concentrations, ergosterol concentration of fine roots, and final dry mass of the trees were determined at the end of the third growing season. Elevated ozone increased the ectomycorrhizal status of the fine roots but had no effect on gas exchange or on the final biomass of either of the clones, indicating equal sensitivity to ozone and no effect of elevated ozone on the intraspecific competitive ability of the clones after three growing seasons. However, in agreement with the data from potted plants of the same clones after two growing seasons, significant differences between the clones were found in all parameters measured. A negative correlation between growth and high concentrations of foliar phenolics indicated that allocation to secondary chemistry also was costly in terms of growth under high resource availability.


Hybrid aspen Clones Ozone Sensitivity Photosynthesis Stomatal conductance Phenolics Flavonol glycosides Salicylates Condensed tannins Competition Ectomycorrhiza 


  1. Agrell, J., Kopper, B., McDonald, E. P., and Lindroth, R. L. 2005. CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Global Change Biol. 11:588–599.CrossRefGoogle Scholar
  2. Allen, S. E. 1989. Chemical Analysis of Ecological Materials. Blackwell Scientific, London.Google Scholar
  3. Andersen, C. P. 2003. Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol. 157:213–228.CrossRefGoogle Scholar
  4. Blande, J. D., Tiiva, P., Oksanen, E., and Holopainen, J. K. 2007. Emission of herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula x tremuloides) clones under ambient and elevated ozone concentrations in the field. Global Change Biol. 13:2538–2550.CrossRefGoogle Scholar
  5. Cabané, M., Pireaux, J., Léger, E., Weber, E., Dizengremel, P., Pollet, B., and Lapierre, C. 2004. Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol. 134:586–594.PubMedCrossRefGoogle Scholar
  6. Christersson, L. 2008. Poplar plantations for paper and energy in the south of Sweden. Biomass Bioenergy 32:997–1000.CrossRefGoogle Scholar
  7. Donaldson, J. R., Kruger, E. L., and Lindroth, R. L. 2006. Competition- and resource-mediated tredeoffs between growth and defensive chemistry in trembling aspen (Populus tremuloides). New Phytol. 169:561–570.PubMedCrossRefGoogle Scholar
  8. Geron, C., Harley, P., and Guenther, A. 2001. Isoprene emission capacity for US tree species. Atmos. Environ. 35:3341–3352.CrossRefGoogle Scholar
  9. Gershenzon, J. 1994. The cost of plant chemical defense against herbivory: A biochemical perspective, pp. 105, in E. A. Bernays (ed.). Insect-Plant Interactions. CRC, Boca Raton.Google Scholar
  10. Grace, S. C., Logan, B. A., and Adams, W. W. 1998. Seasonal differences in foliar content of chlorogenic acid, a phenylpropanoid antioxidant, in Mahonia repens. Plant, Cell Environ. 21:513–521.CrossRefGoogle Scholar
  11. Grebenc, T. and Kraigher, H. 2007. Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biol. 9:279–287.PubMedCrossRefGoogle Scholar
  12. Grulke, N. E., Andersen, C. P., Fenn, M. E., and Miller, P. R. 1998. Ozone exposure and nitrogen deposition lowers root biomass of ponderosa pine in the San Bernardino Mountains, California. Environ. Pollut. 103:63–73.CrossRefGoogle Scholar
  13. Haase, D. L. and Rose, R. 1995. Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments. Forest Sci. 41:54–66.Google Scholar
  14. Häikiö, E., Freiwald, V., Silfver, T., Beuker, E., Holopainen, T., and Oksanen, E. 2007. Impacts of elevated ozone and nitrogen on growth and photosynthesis of European aspen (Populus tremula) and hybrid aspen (P. tremula x Populus tremuloides) clones. Can. J. For. Res. 37:2326–2336.CrossRefGoogle Scholar
  15. Häikiö, E., Freiwald, V., Julkunen-Tiitto, R., Beuker, E., Holopainen, T., and Oksanen, E. 2008. Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula x P. tremuloides) clones. Tree Phys. 29:53–66.CrossRefGoogle Scholar
  16. Hakulinen, J. 1998. Nitrogen-induced reduction in leaf phenolic level is not accompanied by increased rust frequency in a compatible willow (Salix myrsinifolia)—Melampsora rust interaction. Physiol. Plantarum 102:101–110.CrossRefGoogle Scholar
  17. Hakulinen, J., Sorjonen, S., and Julkunen-Tiitto, R. 1999. Leaf phenolics of three willow clones differing in resistance to Melampsora rust infection. Physiol. Plantarum 105:662–669.CrossRefGoogle Scholar
  18. Hemming, J.D., and Lindroth, R.L. 1999. Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. J. Chem. Ecol. 25:1687–1714.CrossRefGoogle Scholar
  19. Hendrick, R. L. and Pregitzer, K. S. 1996. Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. J. Ecol. 84:167–176.CrossRefGoogle Scholar
  20. Hermle, S., Vollenweider, P., Günthardt-Goerg, M. S., McQuattie, C. J., and Matyssek, R. 2007. Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater. Tree Phys. 27:1517–1531.Google Scholar
  21. Holton, M. K., Lindroth, R., and Nordheim, E. 2003. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137:233–244.PubMedCrossRefGoogle Scholar
  22. Jordan, D.N., Green, T.H., Chappelka, A.H., Lockaby, B.G., Meldahl, R.S., and Gjerstad, D.H. 1991. Response of total tannins and phenolics in loblolly pine foliage exposed to ozone and acid rain. J. Chem. Ecol. 17:505–513.CrossRefGoogle Scholar
  23. Kaakinen, S., Kostiainen, K., Ek, F., Saranpää, P., Kubiske, M. E., Sober, J., Karnosky, D. F., and Vapaavuori, E. 2004. Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone. Global Change Biol. 10:1513–1525.CrossRefGoogle Scholar
  24. Karnosky, D. F., Pregitzer, K. S., Zak, D. R., Kubiske, M. E., Hendrey, G. R., Weinstein, D., Nosal, M., and Percy, K. E. 2005. Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ. 28:965–981.CrossRefGoogle Scholar
  25. Kasurinen, A., Keinänen, M. M., Kaipainen, S., Nilsson, L., Vapaavuori, E., Kontro, M. H., and Holopainen, T. 2005. Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Global Change Biol. 11:1167–1179.CrossRefGoogle Scholar
  26. King, J. S., Pregitzer, K. S., Zak, D. R., Sober, J., Isebrands, J. G., Dickson, R. E., Hendrey, G. R., and Karnosky, D. F. 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128:237–250.CrossRefGoogle Scholar
  27. King, J. S., Kubiske, M. E., Pregitzer, K. S., Hendrey, G. R., McDonald, E. P., Giardina, C. P., Quinn, V. S., and Karnosky, D. F. 2005. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol. 168:623–636.PubMedCrossRefGoogle Scholar
  28. Kleiner, K. W., Raffa, K. F., Ellis, D. D., and McCown, B. H. 1998. Effect of nitrogen availability on the growth and phytochemistry of hybrid poplar and the efficacy of the Bacillus thuringiensis cry1A(a) d-endotoxin on gypsy moth. Can. J. For. Res. 28:1055–1067.CrossRefGoogle Scholar
  29. Kontunen-Soppela, S., Ossipov, V., Ossipova, S., and Oksanen, E. 2007. Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Global Change Biol. 13:1053–1067.CrossRefGoogle Scholar
  30. Koricheva, J. 1999. Interpreting phenotypic variation in plant allelochemistry: problems with the use of concentrations. Oecologia 119:467–473.CrossRefGoogle Scholar
  31. Kubiske, M. E., Quinn, V. S., Marquardt, P. E., and Karnosky, D. F. 2007. Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Plant Biol. 9:342–355.PubMedCrossRefGoogle Scholar
  32. Luoranen, J., Lappi, J., Zhang, G., and Sõber, A. 2006. Field performance of hybrid aspen clones planted in summer. Silva Fennica 40:257–269.Google Scholar
  33. Markkola, A. M. 1996. Resource allocation in ectomycorrhozal symbiosis in scots pine affected by environmental changes. PhD dissertation. University of Oulu, Oulu.Google Scholar
  34. Miranda, M., Ralph, S. G., Mellway, R., White, R., Heath, M. C., Bohlmann, J., AND Constabel, C. P. 2007. The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol. Plant-Microbe Interact. 20:816–831.CrossRefGoogle Scholar
  35. Monson, R. K. and Fall, R. 1989. Isoprene emission from aspen leaves. Plant Physiol. 90:267–274.PubMedCrossRefGoogle Scholar
  36. Neville, J., Tessier, J. L., Morrison, I., Scarratt, J., Canning, B., and Klironomos, J. N. 2002. Soil depth distribution of ecto- and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut. Appl. Soil Ecol. 19:209–216.CrossRefGoogle Scholar
  37. Nylund, J. and Wallander, H. 1992. Ergosterol analysis as a means of quantifying mycorrhizal biomass. Meth. Microbiol. 24:77–88.CrossRefGoogle Scholar
  38. Oksanen, E., Amores, G., Kokko, H., Santamaria, J. M., and Kärenlampi, L. 2001. Genotypic variation in growth and physiological responses of Finnish hybrid aspen (Populus tremuloides x P. tremula) to elevated tropospheric ozone concentration. Tree Physiol. 21:1171–1181.PubMedGoogle Scholar
  39. Olsson, P. A., Larsson, L., Bago, B., Wallander, H., and Van Aarle, I. M. 2003. Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytol. 159:7–10.CrossRefGoogle Scholar
  40. Osier, T. L. and Lindroth, R. L. 2001. Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. J. Chem. Ecol. 27:1289–1313.PubMedCrossRefGoogle Scholar
  41. Osier, T. and Lindroth, R. 2006. Genotype and environment determine allocation to and costs of resistance in quaking aspen. Oecologia 148:293–303.PubMedCrossRefGoogle Scholar
  42. Peltonen, P. A., Vapaavuori, E., and Julkunen-Tiitto, R. 2005. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biol. 11:1305–1324.CrossRefGoogle Scholar
  43. Porter, L. J., Hrstich, L. N., and Chan, B. G. 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230.CrossRefGoogle Scholar
  44. Pregitzer, K. S., Deforest, J. L., Burton, A. J., Allen, M. F., Ruess, R. W., and Hendrick, R. L. 2002. Fine root architecture of nine North American trees. Ecol. Monogr. 72:293–309.CrossRefGoogle Scholar
  45. Pregitzer, K. S., Burton, A. J., King, J. S., and Zak, D. R. 2008. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytol. 180:153–161.PubMedCrossRefGoogle Scholar
  46. Rytter, L. and Stener, L. 2005. Productivity and thinning effects in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) stands in southern Sweden. Forestry 78:285–295.CrossRefGoogle Scholar
  47. Saleem, A., Loponen, J., Pihlaja, K., and Oksanen, E. 2001. Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth). J. Chem. Ecol. 27:1049–1062.PubMedCrossRefGoogle Scholar
  48. Salmanowicz, B. and Nylund, J. 1988. High performance liquid chromatography determination of ergosterol as a measure of ectomycorrhiza infection in Scots pine. Eur. J. Forest Pathol. 18:291–298.CrossRefGoogle Scholar
  49. Smith, S. E. and Read, D. J. 1997. Mycorrhizal Symbiosis. Academic, San Diego, CA.Google Scholar
  50. The Royal Society. 2008. Ground-level ozone in the 21st century: future trends, impacts and policy implications. RS Policy document15/08. The Royal Society, London. <>
  51. Tsai, C., Harding, S. A., Tschaplinski, T. J., Lindroth, R. L., and Yuan, Y. 2006. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol. 172:47–62.PubMedCrossRefGoogle Scholar
  52. Tullus, A., Tullus, H., Vares, A., and Kanal, A. 2007. Early growth of hybrid aspen (Populus x wettsteinii Hämet-Ahti) plantations on former agricultural lands in Estonia. Forest Ecol. Manage. 245:118–129.CrossRefGoogle Scholar
  53. Valkama, E., Koricheva, J., and Oksanen, E. 2006. Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biol. 12:1–18.CrossRefGoogle Scholar
  54. Wittig, V. E., Ainsworth, E. A., and Long, S. P. 2007. To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ. 30:1150–1162.PubMedCrossRefGoogle Scholar
  55. Yu, Q. and Pulkkinen, P. 2003. Genotype-environment interaction and stability in growth of aspen hybrid clones. For. Ecol. Manage. 173:25–35.CrossRefGoogle Scholar
  56. Yu, Q., Tigerstedt, P. M. A., and Haapanen, M. 2001. Growth and phenology of hybrid aspen clones (Populus tremula L. x Populus tremuloides Michx.). Silva Fenn. 35:15–25.Google Scholar
  57. Zak, D. R., Holmes, W. E., Pregitzer, K. S., King, J. S., Ellsworth, D. S., and Kubiske, M. E. 2007. Belowground competition and the response of developing forest communities to atmospheric CO2 and O3. Global Change Biol. 13:2230–2238.CrossRefGoogle Scholar
  58. Zsuffa, L., Giordano, L., Pryor, L. D., and Stettler, R. F. 1996. Trends in poplar culture: Some global and regional perspectives, pp. 515, in R. F. Stettler, H. D. J. Bradshaw, P. E. Heilman, and T. M. Hinckley (eds.). Biology of Populus and Its Implications for Management and Conservation. NRC Research, Ottawa, Ontario, Canada.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • E. Häikiö
    • 1
  • M. Makkonen
    • 2
  • R. Julkunen-Tiitto
    • 4
  • J. Sitte
    • 3
  • V. Freiwald
    • 1
  • T. Silfver
    • 4
  • V. Pandey
    • 5
  • E. Beuker
    • 6
  • T. Holopainen
    • 1
  • E. Oksanen
    • 4
  1. 1.Department of Environmental ScienceUniversity of KuopioKuopioFinland
  2. 2.Department of Systems EcologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
  3. 3.Institute of EcologyFriedrich Schiller University JenaJenaGermany
  4. 4.Faculty of BiosciencesUniversity of JoensuuJoensuuFinland
  5. 5.Plant PhysiologyNational Botanical Research InstituteLucknowIndia
  6. 6.Finnish Forest Research Institute Punkaharju Research UnitPunkaharjuFinland

Personalised recommendations