Journal of Chemical Ecology

, Volume 35, Issue 4, pp 391–399 | Cite as

Ontogenetic Variation in the Chemical Defenses of Cane Toads (Bufo marinus): Toxin Profiles and Effects on Predators

  • R. Andrew Hayes
  • Michael R. Crossland
  • Mattias Hagman
  • Robert J. Capon
  • Richard ShineEmail author


We conducted a quantitative and qualitative chemical analysis of cane toad bufadienolides—the cardioactive steroids that are believed to be the principal cane toad toxins. We found complex shifts in toxin composition through toad ontogeny: (1) eggs contain at least 28 dominant bufadienolides, 17 of which are not detected in any other ontogenetic stage; (2) tadpoles present a simpler chemical profile with two to eight dominant bufadienolides; and (3) toxin diversity decreases during tadpole life but increases again after metamorphosis (larger metamorph/juvenile toads display five major bufadienolides). Total bufadienolide concentrations are highest in eggs (2.64 ± 0.56 μmol/mg), decreasing during tadpole life stages (0.084 ± 0.060 μmol/mg) before rising again after metamorphosis (2.35 ± 0.45 μmol/mg). These variations in total bufadienolide levels correlate with toxicity to Australian frog species. For example, consumption of cane toad eggs killed tadpoles of two Australian frog species (Limnodynastes convexiusculus and Litoria rothii), whereas no tadpoles died after consuming late-stage cane toad tadpoles or small metamorphs. The high toxicity of toad eggs reflects components in the egg itself, not the surrounding jelly coat. Our results suggest a dramatic ontogenetic shift in the danger that toads pose to native predators, reflecting rapid changes in the types and amounts of toxins during toad development.


Anuran bufadienolides Bufo marinus toxicity ontogeny bufadienolides cardiac steroids 



We thank the Australian Research Council, Queensland State Government, and Invasive Animals Cooperative Research Center for funding and David Nelson for assistance with bioassay experiments. Procedures involving live animals were approved by the University of Sydney Animal Care and Ethics Committee.

Supplementary material

10886_2009_9608_MOESM1_ESM.doc (72 kb)
Table S1 Total amount of each bufadienolide detected (μmol) in each life history stage of the cane toad. Bufadienolides are listed by retention time (RT). All data are shown as mean ± SEM. “−” means below detectable levels. The “metamorph” category refers to small metamorphs (<13 mm SUL), whereas the “juveniles” category refers to metamorphs >16 mm SUL (DOC 72.0 KB)


  1. Akimova, O. A., Bagrov, A. Y., Lopina, O. D., Kamernitsky, A. V., Tremblay, J., Hamet, P., and Orlov, S. N. 2005. Cardiotonic steroids differentially affect intracellular Na+ and [Na+]i/[K+]i-independent signalling in C7-MDCK cells. J. Biol. Chem. 280:802–819.Google Scholar
  2. Akizawa, T., Mukai, T., Matsukawa, M., Yoshioka, M., Morris, J. F., and Butler, V. P. Jr. 1994. Structures of novel bufadienolides in the eggs of a toad, Bufo marinus. Chem. Pharmacol. Bull. 42:754–756.Google Scholar
  3. Alford, R. A., Cohen, M. P., Crossland, M. R., Hearnden, M. N., James, D., and Schwarzkopf, L. 1995. Population biology of Bufo marinus in northern Australia, pp. 173–181, in M. Finlayson (ed.). Wetland Research in the Wet–Dry Tropics of Australia Office of the Supervising Scientist, Canberra Supervising Scientist Report Number 101.Google Scholar
  4. Arnold, S. J., and Wassersug, R. J. 1978. Differential predation on metamorphic anurans by garter snakes (Thamnophis): social behavior as a possible defense. Ecology 59:1014–1022.CrossRefGoogle Scholar
  5. Brodie, E. D. Jr., Formanowicz, D. R. J, and 1987. Antipredator mechanisms of larval amphibians: protection of palatable individuals. Herpetologica 43:369–373.Google Scholar
  6. Brodie, E. D. Jr., Formanowicz, D. R. Jr., and Brodie, E. D. III. 1978. The development of noxiousness of Bufo americanus tadpoles to aquatic insect predators. Herpetologica 34:302–306.Google Scholar
  7. Burnett, S. 1997. Colonising cane toads cause population declines in native predators: reliable anecdotal information and management implications. Pacific Conserv. Biol. 3:65–72.Google Scholar
  8. Child, T., Phillips, B. L., and Shine, R. 2008. Abiotic and biotic influences on the dispersal behaviour of metamorph cane toads (Bufo marinus) in tropical Australia. J. Exp. Zool. 309A:215–224.CrossRefGoogle Scholar
  9. Cohen, M. P., and Alford, R. A. 1993. Growth, survival, and activity patterns of Bufo marinus metamorphs. Wildl. Res. 20:1–13.CrossRefGoogle Scholar
  10. Crossland, M. 1998. Ontogenetic variation in the toxicity of tadpoles of the introduced cane toad Bufo marinus to native Australian aquatic invertebrate predators. Herpetologica 54:364–369.Google Scholar
  11. Crossland, M. R., and Alford, R. A. 1998. Evaluation of the toxicity of eggs, hatchlings and tadpoles of the introduced toad Bufo marinus (Anura, Bufonidae) to native Australian aquatic predators. Aust. J. Ecol. 23:129–137.CrossRefGoogle Scholar
  12. Crossland, M. R., and Azevedo-Ramos, C. 1999. Effects of Bufo (Anura: Bufonidae) toxins on tadpoles from native and exotic Bufo habitats. Herpetologica 55:192–199.Google Scholar
  13. Crossland, M. R., Brown, G. P., Anstis, M., Shilton, C. M., and Shine, R. 2008. Mass mortality of native anuran tadpoles in tropical Australia due to the invasive cane toad (Bufo marinus). Biol. Conserv. 141:2387–2394.CrossRefGoogle Scholar
  14. Daly, J. W., Garraffo, H. M., Spande, T. F., Giddings, L. -A., Saporito, R. A., Vieites, D. R., and Vences, M. 2008. Individual and geographic variation of skin alkaloids in three species of Madagascan poison frogs (Mantella). J Chem. Ecol. 34:252–259.PubMedCrossRefGoogle Scholar
  15. Doody, J. S., Green, B., Sims, R., Rhind, D., West, P., and Steer, D. 2006. Indirect impacts of invasive cane toads (Bufo marinus) on nest predation in pig-nosed turtles (Carettochelys insculpta). Wildl. Res. 33:349–354.CrossRefGoogle Scholar
  16. Duellman, W. E., and Trueb, L. 1986. Biology of amphibians. McGraw-Hill, New York.Google Scholar
  17. Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., De Sa, R. O., Channing, A., Wilkinson, M., Donnellan, S. C., Raxworthy, C. J., Campbell, J. A., Blotto, B. L., Moler, P., Drewes, R. C., Nussbaum, R. A., Lynch, J. D., Green, D. M., and Wheeler, W. C. 2006. The amphibian tree of life. Bull. Am. Mus. Nat. Hist. 297:1–370.CrossRefGoogle Scholar
  18. Gosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190.Google Scholar
  19. Griffiths, A. D., and McKay, J. L. 2007. Cane toads reduce the abundance and site occupancy of Merten’s water monitor (Varanus mertensi). Wildl. Res. 34:609–615.Google Scholar
  20. Grubb, J. D. 1972. Differential predation by Gambusia affinis on the eggs of seven species of anuran amphibians. Am. Midl. Nat. 88:102–108.CrossRefGoogle Scholar
  21. Gunzburger, M. S., and Travis, J. 2005. Critical literature review of the evidence for unpalatability of amphibian eggs and larvae. J. Herpetol. 39:547–571.CrossRefGoogle Scholar
  22. Hanifin, C. T., Brodie, E. D. III., and Brodie, E. D. II. 2004. Tetrodotoxin levels in eggs of the rough-skin newt, Taricha granulosa, are correlated with female toxicity. J. Chem. Ecol. 29:1729–1739.CrossRefGoogle Scholar
  23. Heyer, R. W., McDiarmid, R. W., and Weigmann, D. L. 1975. Tadpoles, predation and pond habitats in the tropics. Biotropica 7:100–111.CrossRefGoogle Scholar
  24. Jennings, W. S. Jr., and Schaefer, G. C. 1978. Antipredative function of the gelatinous coating of the eggs of the frog, Rana p. pipiens Schreber (Amphibia: Ranidae). Virginia J. Sci. 29:62.Google Scholar
  25. Keenan, S. M., Delisle, R. K., Welsh, W. J., Paula, S., and Ball, W. J. 2005. Elucidation of the Na+, K+-ATPase digitalis binding site. J. Mol. Graph. Model. 23:465–475.PubMedCrossRefGoogle Scholar
  26. Kelehear, C. 2007. The effects of lung nematodes (Rhabdias cf. hylae) on metamorph cane toads (Chaunus marinus), and implications for biological control. B.Sc. (Honours) thesis, School of Biological Sciences, University of Sydney.Google Scholar
  27. Lawler, K. L., and Hero, J. M. 1997. Palatability of Bufo marinus tadpoles to a predatory fish decreases with development. Wildl. Res. 24:327–334.CrossRefGoogle Scholar
  28. Letnic, M., Webb, J. K., and Shine, R. 2008. Invasive cane toads (Bufo marinus) cause mass mortality of freshwater crocodiles (Crocodylus johnstoni) in tropical Australia. Biol. Conserv. 141:1773–1782.CrossRefGoogle Scholar
  29. Lever, C. 2001. The cane toad. The history and ecology of a successful colonist. Westbury Academic, Otley.Google Scholar
  30. Licht, L. E. 1968. Unpalatability and toxicity of toad eggs. Herpetologica 24:93–98.Google Scholar
  31. Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., and Bazzaz, F. 2000. Biotic invasions: causes, epidemiology, global consequences and control. Ecol. Appl. 10:689–710.CrossRefGoogle Scholar
  32. Mahony, M., and Clulow, J. 2006. Control of cane toads by sterile male release and inherited sterility pp. 134–150, in K. L. Molloy, and W. R. Henderson (eds.). Proceedings of the Cane Toad Workshop, CRC for Invasive Animals, Brisbane, June 2006. Invasive Animals Cooperative Research Centre, Canberra.Google Scholar
  33. Matsukawa, M., Akizawa, T., Mukai, T., Yoshioka, M., Morris, J. F., and Butler, V. P. Jr. 1994. Structures and biological activities of bufadienolides from the toad, Bufo marinus. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 36:807–814.Google Scholar
  34. Mooney, H. A., and Cleland, E. E. 2001. The evolutionary impact of invasive species. Proc. Nat. Acad. Sci. U. S. A. 98:5446–5451.CrossRefGoogle Scholar
  35. Okimura, H., Yassuhara, J. C., Fambrough, D. M., and Takeyasu, K. 2002. P-type ATPases in Caenorhabditis and Drosophila: implications for evolution of the P-type ATPase subunit families with special reference to the Na, K-ATPase and H, K-ATPase subgroup. J. Membr. Biol. 191:13–24.CrossRefGoogle Scholar
  36. Pallister, J., Voysey, R., Olsen, V., and Hyatt, A. 2006. Viral delivery of cane toad biological control pp. 89–93, in K. L. Molloy, and W. R. Henderson (eds.). Proceedings of the Cane Toad Workshop, CRC for Invasive Animals, Brisbane, June 2006 Invasive Animals Cooperative Research Centre, Canberra.Google Scholar
  37. Peterson, J. A., and Blaustein, A. R. 1992. Relative palatabilities of anuran larvae to natural aquatic predators. Copeia 1992:577–584.CrossRefGoogle Scholar
  38. Phillips, B. L., Brown, G. P., and Shine, R. 2003. Assessing the potential impact of cane toads on Australian snakes. Conserv. Biol. 17:1738–1747.CrossRefGoogle Scholar
  39. Phisalix, C. 1903. Corrélations fonctionnelles entre les glandes à venin et l’ovaire chez le Crapaud commun. C. R. Acad. Sci. 137:1082–1084.Google Scholar
  40. Phisalix, M. 1922. Animaux Venimeux et Venins, vol. 2. Masson et Cie, Paris.Google Scholar
  41. Pramuk, J. B. 2006. Phylogeny of South American Bufo (Anura: Bufonidae) inferred from combined evidence. Zool. J. Linn. Soc. 146:407–452.CrossRefGoogle Scholar
  42. Pramuk, J. B., Robertson, T., Sites, J. W. Jr., and Noonan, B. P. 2008. Around the world in 10 million years: biogeography of the nearly cosmopolitan true toads (Anura: Bufonidae). Global Ecol. Biogeog. 17:72–83.Google Scholar
  43. Sandlund, O. T., Schei, P. J., and Viken, A. 1999. Invasive species and biodiversity management. Kluwer Academic, Boston.Google Scholar
  44. Schlaepfer, M. A., Runge, M. C., and Sherman, P. W. 2002. Ecological and evolutionary traps. Trends Ecol. Evol. 17:474–480.CrossRefGoogle Scholar
  45. Shine, R., Brown, G. P., Phillips, B. L., Webb, J. K., and Hagman, M. 2006. The biology, impact and control of cane toads: an overview of the University of Sydney’s research program, pp. 18–32, in K. L. Molloy, and W. R. Henderson (eds.). Proceedings of the Cane Toad Workshop, CRC for Invasive Animals, Brisbane, June 2006 Invasive Animals Cooperative Research Centre, Canberra.Google Scholar
  46. Steyn, P. S., and Van Heerden, F. R. 1998. Bufadienolides of plant and animal origin. Nat. Prod. Rep. 15:397–413.PubMedCrossRefGoogle Scholar
  47. Wallick, E. T., and Schwartz, A. 1988. Interaction of cardiac glycosides with Na+, K+-ATPase. Meth. Enzymol. 156:201–213.PubMedCrossRefGoogle Scholar
  48. Ward, D., and Sexton, O. J. 1981. Anti-predator role of salamander egg membranes. Copeia 1981:724–726.CrossRefGoogle Scholar
  49. Werschkul, D. F., and Christensen, M. T. 1977. Differential predation by Lepomis macrochirus on the eggs and tadpoles of Rana. Herpetologica 33:237–241.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Andrew Hayes
    • 1
  • Michael R. Crossland
    • 2
  • Mattias Hagman
    • 2
  • Robert J. Capon
    • 1
  • Richard Shine
    • 2
    Email author
  1. 1.Institute for Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
  2. 2.School of Biological Sciences A08University of SydneySydneyAustralia

Personalised recommendations