Journal of Chemical Ecology

, Volume 35, Issue 3, pp 355–367 | Cite as

Fine Tuning of Social Integration by Two Myrmecophiles of the Ponerine Army Ant, Leptogenys distinguenda

  • Volker Witte
  • Susanne Foitzik
  • Rosli Hashim
  • Ulrich Maschwitz
  • Stefan Schulz


Myrmecophiles are animals that live in close association with ants and that frequently develop elaborate mechanisms to infiltrate their well-defended host societies. We compare the social integration strategies of two myrmecophilic species, the spider, Gamasomorpha maschwitzi, and the newly described silverfish, Malayatelura ponerophila gen. n. sp. n., into colonies of the ponerine army ant, Leptogenys distinguenda (Emery) (Hymenoptera: Formicidae). Both symbionts use chemical mimicry through adoption of host cuticular hydrocarbons. Exchange experiments between L. distinguenda and an undetermined Leptogenys species demonstrate that reduced aggression toward alien ants and increased social acceptance occurred with individuals of higher chemical similarity in their cuticular hydrocarbon profiles. We found striking differences in chemical and behavioral strategies between the two myrmecophiles. Spider cuticular hydrocarbon profiles were chemically less similar to the host than silverfish profiles were. Nevertheless, spiders received significantly fewer attacks from host ants and survived longer in laboratory colonies, whereas silverfish were treated with high aggression and were killed more frequently. When discovered and confronted by the host, silverfish tended to escape and were chased aggressively, whereas spiders remained in contact with the confronting host ant until aggression ceased. Thus, spiders relied less on chemical mimicry but were nevertheless accepted more frequently by the host on the basis of behavioral mechanisms. These findings give insights into the fine tuning of social integration mechanisms and show the significance of qualitative differences among strategies.


Ants Chemical mimicry Cuticular hydrocarbons Gamasomorpha maschwitzi Hymenoptera Formicidae Malayatelura ponerophila Myrmecophiles Nestmate recognition Silverfish Social integration Spiders 



We are grateful for the financial support from the DFG (Deutsche Forschungsgemeinschaft); Project WI 2646/3-1. We thank K. Staudt, K. Ortner, S. Schreyer, and A. Fenzel for assistance in the field.

Supplementary material

10886_2009_9606_MOESM1_ESM.doc (96 kb)
ESM (DOC 96.0 KB)


  1. Allan, R. A., Capon, R. J., Brown, W. V., and Elgar, M. A. 2002. Mimicry of host cuticular hydrocarbons by salticid spider Cosmophasis bitaeniata that preys on larvae of tree ants Oecophylla smaragdina. J. Chem. Ecol. 28:835–848.PubMedCrossRefGoogle Scholar
  2. Blumer, M., Mullin, M. M., and Guillard, R. L. 1970. Polyunsaturated hydrocarbon (3,6,9,12,15,18-heneicosahexaene) in the marine food web. Mar. Biol. 6:226–235.CrossRefGoogle Scholar
  3. Carlson, D. A., Roan, C. S., Yost, R. A., and Hector, J. 1989. Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal. Chem. 61:1564–1571.CrossRefGoogle Scholar
  4. Carlson, D. A., Bernier, U. R., and Sutton, B. D. 1998. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol 24:1845–1865.CrossRefGoogle Scholar
  5. Clarke, K. R. 1999. Nonmetric multivariate analysis in community-level ecotoxicology. Environ. Toxicol. Chem. 18:118–127.CrossRefGoogle Scholar
  6. Cushing, P. E. 1997. Myrmecomorphy and myrmecophily in spiders: a review. Fla. Entomol. 80:165–193.CrossRefGoogle Scholar
  7. Dettner, K., and Liepert, C. 1994. Chemical mimicry and camouflage. Annu. Rev. Entomol. 39:129–154.CrossRefGoogle Scholar
  8. Elgar, M. A., and Allan, R. A. 2004. Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften 91:143–147.PubMedCrossRefGoogle Scholar
  9. Elgar, M. A., and Allan, R. A. 2006. Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: is it colony-specific? J. Ethol. 24:239–246.CrossRefGoogle Scholar
  10. Francis, G. W., and Veland, K. 1981. Alkylthiolation for the determination of double-bond positions in linear alkenes. J. Chromatogr. 219:379–384.CrossRefGoogle Scholar
  11. Goff, L. J. 1982. Symbiosis and parasitism: another viewpoint. BioScience 32:255–256.CrossRefGoogle Scholar
  12. Gotwald, W. H. 1995. Army ants—the biology of social predation. Cornell University Press, Ithaca, NY, USA.Google Scholar
  13. Hefetz, A. 2007. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)—interplay of colony odor uniformity and odor idiosyncrasy. Myrmecol. News 10:59–68.Google Scholar
  14. Hölldobler, B., and Wilson, E. O. 1990. The ants. The Belknap Press of Harvard University Press, Cambridge, MA.Google Scholar
  15. Howard, R. W., and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.PubMedCrossRefGoogle Scholar
  16. Karunen, P. 1974. Moss spores. III. Polyunsaturated hydrocarbons from Polytrichum commune spores. Phytochemistry 13:2209–2213.CrossRefGoogle Scholar
  17. Kistner, D. H. 1982. The social insects’ bestiary, pp. 1–244, in H. R. Hermann (eds.). Social InsectsAcademic, New York, NY.Google Scholar
  18. Leal, W. S., Parra-Pedrazzoli, A. L., Kaissling, K. E., Morgan, T. I., Zalom, F. G., Pesak, D. J., Dundulis, E. A., Burks, C. S., and Higbee, B. S. 2005. Unusual pheromone chemistry in the navel orangeworm: novel sex attractants and a behavioral antagonist. Naturwissenschaften 92:139–146.PubMedCrossRefGoogle Scholar
  19. Lenoir, A., Malosse, C., and Yamaoka, R. 1997. Chemical mimicry between parasitic ants of the genus Formicoxenus and their host Myrmica (Hymenoptera, Formicidae). Biochem. Syst. Ecol. 25:379–389.CrossRefGoogle Scholar
  20. Lenoir, A., D'Ettorre, P., Errard, C., and Hefetz, A. 2001. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46:573–599.PubMedCrossRefGoogle Scholar
  21. Leonhardt, B. A., and Devilbiss, E. D. 1985. Separation and double-bond determination on nanogram quantities of aliphatic monounsaturated alcohols, aldehydes and carboxylic acid methyl esters. J. Chromatogr. 322:484–490.CrossRefGoogle Scholar
  22. Maschwitz, U., Steghaus-Kovac, S., Gaube, R., and Hänel, H. 1989. A South East Asian ponerine ant of the genus Leptogenys (Hym., Form.) with army ant life habits. Behav. Ecol. Sociobiol. 24:305–316.CrossRefGoogle Scholar
  23. Reese, K. M. 1982. Chemistry helps beetles live in fire ants' nests. Chem Eng News 30:44.Google Scholar
  24. Rettenmeyer, C. W. 1963. The behavior of Thysanura found with army ants. Ann. Entomol. Soc. Am. 56:170–174.Google Scholar
  25. Schulz, S. 2001. Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647.PubMedCrossRefGoogle Scholar
  26. Schulz, S., and Nishida, R. 1996. The pheromone system of the male danaine butterfly, Idea leuconoe. Bioorg. Med. Chem. 4:341–349.PubMedCrossRefGoogle Scholar
  27. Soroker, V., Vienne, C., and Hefetz, A. 1995. Hydrocarbon dynamics within and between nestmates in Cataglyphis niger (Hymenoptera: Formicidae). J. Chem. Ecol. 21:365–378.CrossRefGoogle Scholar
  28. Steiger, S., Peschke, K., Francke, W., and Mueller, J. K. 2007. The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc. R. Soc. Lond. B. Biol. Sci. 274:2211–2220.CrossRefGoogle Scholar
  29. Vender Meer, R. K., and Wojcik, D. P. 1982. Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science 218:806–808.CrossRefGoogle Scholar
  30. Vane-Wright, R. I. 1976. A unified classification of mimetic resemblances. Biol. J. Linn. Soc. 8:25–56.CrossRefGoogle Scholar
  31. Vincenti, M., Guglielmetti, G., Cassani, G., and Tonini, C. 1987. Determination of double bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Anal. Chem. 59:694–699.CrossRefGoogle Scholar
  32. Witte, V. 2001. Organisation und Steuerung des Treiberameisenverhaltens bei Südostasiatischen Ponerinen der Gattung Leptogenys. Ph.D. dissertation. Frankfurt/Main: J. W. Goethe-Universität.Google Scholar
  33. Witte, V., Leingärtner, A., Sabaß, L., Hashim, R., and Foitzik, S. 2008. Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim. Behav. 76:1477–1486.CrossRefGoogle Scholar
  34. Wunderlich, J. 1994. Beschreibung bisher unbekannter Spinnenarten und -Gattungen aus Malaysia und Indonesien (Arachnida: Araneae: Oonopidae, Tetrablemidae, Telemidae, Pholcidae, Linyphiidae, Nesticidae, Theridiidae und Dictynidae). Beitr. Araneol. 4:559–580.Google Scholar
  35. Youngblood, W. W., Blumer, M., Guillard, R. L., and Fiore, F. 1971. Saturated and unsaturated hydrocarbons in marine benthic algae. Mar. Biol. 8:190–201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Volker Witte
    • 1
  • Susanne Foitzik
    • 1
  • Rosli Hashim
    • 2
  • Ulrich Maschwitz
    • 3
  • Stefan Schulz
    • 4
  1. 1.Department of Behavioral EcologyLudwig-Maximilians Universität MünchenPlaneggGermany
  2. 2.Department of Biological Sciences, Faculty of ScienceUniversity MalayaKuala LumpurMalaysia
  3. 3.Department of Biology and InformaticsJohann Wolfgang-Goethe UniversitätOberurselGermany
  4. 4.Department of Organic ChemistryTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations