Journal of Chemical Ecology

, Volume 35, Issue 2, pp 154–162 | Cite as

Essential Oil of Artemisia scoparia Inhibits Plant Growth by Generating Reactive Oxygen Species and Causing Oxidative Damage

  • Harminder Pal Singh
  • Shalinder Kaur
  • Sunil Mittal
  • Daizy Rani Batish
  • Ravinder Kumar Kohli


We investigated the chemical composition and phytotoxicity of the essential oil extracted from leaves of Artemisia scoparia Waldst. et Kit. (red stem wormwood, Asteraceae). GC/GC-MS analyses revealed 33 chemical constituents representing 99.83% of the oil. The oil, in general, was rich in monoterpenes that constitute 71.6%, with β-myrcene (29.27%) as the major constituent followed by (+)-limonene (13.3%), (Z)-β-ocimene (13.37%), and γ-terpinene (9.51%). The oil and β-myrcene were evaluated in a dose–response bioassay under laboratory conditions for phytotoxicity against three weeds—Avena fatua, Cyperus rotundus, and Phalaris minor. A significant reduction in germination, seedling growth, and dry matter accumulation was observed in the test weeds. At the lowest treatment of 0.07 mg/ml Artemisia oil, germination was reduced by 39%, 19%, and 10.6% in C. rotundus, P. minor, and A. fatua, respectively. However, the inhibitory effect of β-myrcene was less. In general, a dose-dependent effect was observed and the growth declined with increasing concentration. Among the three weeds, the inhibitory effect was greatest on C. rotundus, so it was selected for further studies. We explored the explanation for observed growth inhibition in terms of reactive oxygen species (ROS: lipid peroxidation, membrane integrity, and amounts of conjugated dienes and hydrogen peroxide)-induced oxidative stress. Exposure of C. rotundus to Artemisia oil or β-myrcene enhanced solute leakage, indicating membrane disintegration. There were increased levels of malondialdehyde and hydrogen peroxide, indicating lipid peroxidation and induction of oxidative stress. We conclude that Artemisia oil inhibits plant root growth through generation of ROS-induced oxidative damage.


Artemisia scoparia Conjugated dienes Electrolyte leakage Essential oil Growth inhibition Hydrogen peroxide Lipid peroxidation β-Myrcene Oxidative damage 



Shalinder Kaur and Sunil Mittal are thankful to Department of Science and Technology, Government of India, New Delhi, and University Grants Commission, New Delhi, India, respectively, for the financial assistance.


  1. Abrahim, D., Braguini, W. L., Kelmer Bracht, A. M., and Ishi-Iwamoto, E. L. 2000. Effects of four monoterpenes on germination primary root growth and mitochondrial respiration of maize. J. Chem. Ecol. 26:611–623.CrossRefGoogle Scholar
  2. Adams, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography Mass Spectroscopy. Allured Publishing, Carol Stream, Illinois.Google Scholar
  3. Anonymous 1993. Artemisia Linn, pp. 434–442, in G. P. Phondke (ed.). The Wealth of India—Raw Materials, vol. III (Ca–Ci), revised series. Council of Scientific and Industrial Research, New Delhi, India.Google Scholar
  4. Bakkali, F., Averbeck, S., Averbeck, D., and Idaomar, M. 2008. Biological effects of essential oils—a review. Food Chem. Toxicol. 46:446–475.PubMedCrossRefGoogle Scholar
  5. Barney, J. N., Hay, A. G., and Weston, L. A. 2005. Isolation and characterisation of allelopathic volatiles from mugwort (Artemisia vulgaris). J. Chem. Ecol. 31:247–265.PubMedCrossRefGoogle Scholar
  6. Basher, K. H. C., Ozek, T., Demirehakmak, B., Nuriddinov, K. H. R., Abduganiev, B. Y. O., Aripov, K. H. N., Khodzimatov, K. K. H., Nigmatullaev, O. A., and Shamyanov, E. D. 1997. Essential oils of some Artemisia species from Central Asia. Chem. Nat. Comp. 33:383–385.Google Scholar
  7. Batish, D. R., Setia, N., Singh, H. P., and Kohli, R. K. 2004. Phytotoxicity of lemon-scented eucalypt oil and its potential use as a bioherbicide. Crop Prot. 23:1209–1214.CrossRefGoogle Scholar
  8. Batish, D. R., Singh, H. P., Setia, N., Kaur, S., and Kohli, R. K. 2006a. Chemical composition and inhibitory activity of essential oil from decaying leaves of Eucalyptus citriodora. Z. Naturforsch. 61c:52–56.Google Scholar
  9. Batish, D. R., Singh, H. P., Setia, N., Kaur, S., and Kohli, R. K. 2006b. Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora. Z. Naturforsch. 61:465–471.Google Scholar
  10. Batish, D. R., Lavanya, K., Singh, H. P., and Kohli, R. K. 2007a. Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regul. 51:119–128.CrossRefGoogle Scholar
  11. Batish, D. R., Singh, H. P., Setia, N., Kohli, R. K., Kaur, S., and Yadav, S. S. 2007b. Alternative control of littleseed canary grass using eucalypt oil. Agron. Sustain. Dev. 27:171–177.CrossRefGoogle Scholar
  12. Batish, D. R., Singh, H. P., Kohli, R. K., and Kaur, S. 2008. Eucalyptus essential oil as natural pesticide. For. Ecol. Manage. 256:2166–2174.CrossRefGoogle Scholar
  13. Dayan, F. E., Romagni, J., and Duke, S. O. 2000. Investigating the mode of action of natural phytotoxins. J. Chem. Ecol. 26:2079–2094.CrossRefGoogle Scholar
  14. Duke, S. O., and Kenyon, W. H. 1993. Peroxidizing activity determined by cellular leakage, pp. 61–66, in P. Böger, and G. Sandmann (eds.). Target Assays for Modern Herbicides and Related Phytotoxic Compounds. CRC Press, Boca Raton, FL.Google Scholar
  15. Ens, E. J., Bremner, J. B., French, K., and Korth, J. 2008. Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol. Inv. 11:275–287. doi: 10.1007/s10530-008-9232-3.CrossRefGoogle Scholar
  16. Heath, R. L., and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189–198.PubMedCrossRefGoogle Scholar
  17. Kong, C. H., Hu, F., Xu, T., and Lu, Y. H. 1999. Allelopathic potential and chemical constituents of volatile oil from Ageratum conyzoides. J. Chem. Ecol. 25:2347–2356.CrossRefGoogle Scholar
  18. Langenheim, J. H. 1994. Higher plant terpenoids: a phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.CrossRefGoogle Scholar
  19. Maffei, M., Camusso, W., and Sacco, S. 2001. Effect of Mentha × piperita essential oil and monoterpenes on cucumber root membrane potential. 2001. Phytochemistry 58:703–707.PubMedCrossRefGoogle Scholar
  20. McLafferty, F. W. 1989. Registry of Mass Spectral Data. 5th edn.John Wiley and Sons, New York.Google Scholar
  21. Mirjalili, M. H., Tabatabaei, S. M. F., Hadian, J., Ebrahimi, S. N., and Sonboli, A. 2007. Phenological variation of the essential oil of Artemisia scoparia Waldst. et Kit from Iran. J. Essential Oil. Res. 19:326–329.Google Scholar
  22. Montillet, J.-L., Chamnongpol, S., Rustérucci, C., Dat, J., Van de Cotte, B., Agnel, J.-P., Battesti, C., Inzé, D., Van Breusegem, F., and Triantaphylidès, C. 2005. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol. 138:1516–1526.PubMedCrossRefGoogle Scholar
  23. Muller, C. H., Muller, W. H., and Haines, B. L. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473.PubMedCrossRefGoogle Scholar
  24. Nishida, N., Tamotsu, S., Nagata, N., Saito, C., and Sakai, A. 2005. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 31:1187–1203.PubMedCrossRefGoogle Scholar
  25. Romagni, J. G., Allen, S. N., and Dayan, F. E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26:303–313.CrossRefGoogle Scholar
  26. Safaei-Ghomi, J., Bamoniri, A., Sarafraz, M. B., and Batooli, H. 2005. Volatile components from Artemisia scoparia Waldst. et Kit. growing in central Iran. Flavour Fragr. J. 20:650–652.CrossRefGoogle Scholar
  27. Scrivanti, L. R., Zunino, M., and Zygadlo, J. A. 2003. Tagetes minuta and Schinus areira essential oils as allelopathic agents. Biochem. Syst. Ecol. 31:563–572.CrossRefGoogle Scholar
  28. Singh, H. P., Batish, D. R., Kaur, S., Ramezani, H., and Kohli, R. K. 2002. Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann. Appl. Biol. 141:111–116.CrossRefGoogle Scholar
  29. Singh, H. P., Batish, D. R., and Kohli, R. K. 2003. Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit. Rev. Plant Sci. 22:239–311.CrossRefGoogle Scholar
  30. Singh, H. P., Batish, D. R., Setia, N., and Kohli, R. K. 2005. Herbicidal activity of volatile essential oils from Eucalyptus citriodora against Parthenium hysterophorus. Ann. Appl. Biol. 146:89–94.CrossRefGoogle Scholar
  31. Singh, H. P., Batish, D. R., Kaur, S., Arora, K., and Kohli, R. K. 2006a. α-pinene inhibits growth and induces oxidative stress in roots. Ann. Bot. 98:1261–1269.PubMedCrossRefGoogle Scholar
  32. Singh, H. P., Batish, D. R., Kaur, S., Kohli, R. K., and Arora, K. 2006b. Phytotoxicity of volatile monoterpene citronellal against some weeds. Z. Naturforsch. 61c:334–340.Google Scholar
  33. Singh, H. P., Batish, D. R., Kohli, R. K., and Arora, K. 2007. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 53:65–73.CrossRefGoogle Scholar
  34. Singh, H. P., Kaur, S., Mittal, S., Batish, D. R., and Kohli, R. K. 2008. Phytotoxicity of major constituents of volatile oil from leaves of Artemisia scoparia Waldst. & Kit. Z. Naturforsch. 63c:663–666.Google Scholar
  35. Singh, H. P., Mittal, S., Kaur, S., Batish, D. R., and Kohli, R. K. 2009. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 57:21–30. doi: 10.1007/s10725-008-9314-3.Google Scholar
  36. Stein, S. E. 1990. National Institute of Standards and Technology (NIST). Mass Spectral Data Base and Software, Ver. 3.02. Gaithersburg, Maryland, USA.Google Scholar
  37. Stone, J. R., and Yang, S. 2006. Hydrogen peroxide: a signaling messenger. Antioxidant Redox Signal. 8:243–270.CrossRefGoogle Scholar
  38. Takeda, T., Yokota, A., and Shigeoka, S. 1995. Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell. Physiol. 36:1089–1095.Google Scholar
  39. Vaughn, S. F. 1991. Natural compounds from spices could replace potato sprouting inhibitors. Ind. Bioprocess. 13:5.Google Scholar
  40. Weaver, T., and Klarich, D. 1977. Allelopathic effects of volatile substances from Artemisia tridentata Nutt. Am. Midl. Nat. 97:508–512.CrossRefGoogle Scholar
  41. Yun, K. W., Kil, B. S., and Han, D. M. 1993. Phytotoxic and antimicrobial activity of volatile constituents of Artemisia princeps var. orientalis. J. Chem. Ecol. 19:2757–2766.CrossRefGoogle Scholar
  42. Zunino, M. P., and Zygadlo, J. A. 2004. Effect of monoterpenes on lipid peroxidation in maize. Planta 219:303–309.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Harminder Pal Singh
    • 1
  • Shalinder Kaur
    • 2
  • Sunil Mittal
    • 1
  • Daizy Rani Batish
    • 2
  • Ravinder Kumar Kohli
    • 1
    • 2
  1. 1.Centre for Environment and Vocational StudiesPanjab UniversityChandigarhIndia
  2. 2.Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations