Journal of Chemical Ecology

, Volume 34, Issue 12, pp 1584–1592 | Cite as

Myrcene Hydroxylases do not Determine Enantiomeric Composition of Pheromonal Ipsdienol in Ips spp.

  • Pamela Sandstrom
  • Matthew D. Ginzel
  • Jeremy C. Bearfield
  • William H. Welch
  • Gary J. Blomquist
  • Claus Tittiger


Myrcene (7-methyl-3-methylene-1,6-octadiene) hydroxylation is likely one of the final reactions involved in the production of the Ips spp. (Coleoptera: Scolytidae) aggregation pheromone components, ipsdienol (2-methyl-6-methylene-2,7-octadien-4-ol) and ipsenol (2-methyl-6-methylene-7-octen-4-ol). To gain insight into the evolution of pheromone production, we isolated a full-length cDNA from the pinyon ips, Ips confusus (LeConte), that encodes a pheromone-biosynthetic cytochrome P450, I. confusus CYP9T1 (IcCYP9T1). The recovered cDNA is 1.70 kb, and the open reading frame encodes a 532 amino acid protein. IcCYP9T1 is 94% identical to the pine engraver, Ips pini (Say), CYP9T2 ortholog that hydroxylates myrcene. Quantitative real-time PCR experiments showed that IcCYP9T1, as does CYP9T2, has an expression pattern similar to other pheromone-biosynthetic genes in I. pini. Basal expression levels were higher in males than females, and expression was significantly induced in male, but not in female, anterior midguts by feeding on host phloem. Microsomes, prepared from Sf9 cells co-expressing baculoviral-mediated recombinant IcCYP9T1 and house fly (Musca domestica) NADPH-cytochrome P450 reductase, converted myrcene to ~85%-(R)-(−)-ipsdienol. These results are consistent with IcCYP9T1 encoding a myrcene hydroxylase that functions near the end of the pheromone-biosynthetic pathway. Since the I. confusus pheromone blend contains >90%-(S)-(+)-ipsdienol, these results confirm further that Ips spp. myrcene hydroxylases do not control the final ipsdienol enantiomeric blend. Other enzymes are required following myrcene hydroxylation to achieve the critical quantity and enantiomeric composition of pheromonal ipsenol and ipsdienol used by different Ips spp.


Ips Bark beetle Pheromone P450 Pheromone biosynthesis Monoterpene Functional expression 



We thank D. Vanderwel for deuterium-labeled myrcene and for sharing unpublished data, M. Schuler for the housefly P450 reductase baculoviral clone, C. Oehlschlager for the ipsdienol standard, D. Nelson for the naming of Ips confusus CYP9T1 in accordance with current P450 nomenclature, the Nevada Genomics Center for assistance with sequencing and qRT-PCR, D. Quilici at the Nevada Proteomics Center for GC-MS analysis, H. Damke for help with baculovirus expression, A. Griffith for studies of potential housekeeping genes, other members of the laboratories of GJB and CT for assistance with collecting beetles, dissections, assays, and helpful advice, and the Bureau of Land Management and US Forest Service for permission to collect beetle-infested trees. This work was supported by USDA-NRI (2006-35604-16727), NSF (IBN 0316370), and a HATCH grant from the Nevada Agriculture Experiment Station (NAES) (NEV00339). This paper is a contribution of the NAES, publication # 03087107.


  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.PubMedGoogle Scholar
  2. Bearfield, J. C., Keeling, C. I., Young, S., Blomquist, G. J., and Tittiger, C. 2006. Isolation, endocrine regulation, and mRNA distribution of the 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMG-S) gene from the pine engraver, Ips pini. Insect Mol. Biol. 15:187–195.PubMedCrossRefGoogle Scholar
  3. Browne, L. E. 1972. An emergence cage and refrigerated collector for wood-boring insects and their associates. J. Econ. Entomol. 65:1499–1501.Google Scholar
  4. Byers, J. A. 1989. Chemical ecology of bark beetles. Cel. Mol. Life Sci. 45:271–283.CrossRefGoogle Scholar
  5. Domingue, M., and Teale, S. 2008. The genetic architecture of pheromone production between populations distant from the hybrid zone of the pine engraver, Ips pini. Chemoecology. 17:255–262.CrossRefGoogle Scholar
  6. Domingue, M., Starmer, W., and Teale, S. 2006. Genetic control of the enantiomeric composition of ipsdienol in the pine engraver, Ips pini. J. Chem. Ecol. 32:1005–1026.PubMedCrossRefGoogle Scholar
  7. Feyereisen, R. 2005. Insect Cytochromes P450. pp 1–77. in L. I. Gilbert, K. Iatrou, S. S. Gill (eds.). Comprehensive Molecular Insect Science: Elsevier BV.Google Scholar
  8. Fish, R. H., Browne, L. E., Wood, D., and Henry, D. L. 1979. Conversions of deuterium-labelled ipsdienol with sexual and enantioselectivity in Ips paraconfusus Lanier. Tetrahedron Lett. 17:1465–1468.CrossRefGoogle Scholar
  9. Fish, R., Browne, L. E., and Bergot, B. J. 1984. Pheromone biosynthetic pathways: conversion of ipsdienone to (-)-ipsdienol, a mechanism for enantioselective reduction in the male bark beetle, Ips paraconfusus. J. Chem. Ecol. 10:1057–1064.CrossRefGoogle Scholar
  10. Furniss, R. L. and Carolin, V. M. 1977. Western Forest Insects. USDA Forest Service Misc. Pub. 1339:654.Google Scholar
  11. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., Bairoch, A. 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003 31(13):3784–8.CrossRefGoogle Scholar
  12. Gilg, A. B., Bearfield, J. C., Tittiger, C., Welch, W. H., and Blomquist, G. J. 2005. Isolation and functional expression of the first animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. Proc. Nat. Acad. Sci. U. S. A. 102:9760–9765.CrossRefGoogle Scholar
  13. Gilg, A. B., Tittiger, C., and Blomquist, G. J. Unpublished data. Geranyl diphosphate synthase functions as both an isoprenyl diphosphate synthase and a monoterpene synthase (myrcene synthase) in the bark beetle, Ips pini (Say). Naturwissenschaften.Google Scholar
  14. Hall, G. M., Tittiger, C., Andrews, G. L., Mastick, G. S., Kuenzli, M., Luo, X., Seybold, S. J., and Blomquist, G. J. 2002. Midgut tissue of male pine engraver, Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo. Naturwissenschaften. 89:79–83.PubMedCrossRefGoogle Scholar
  15. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., and Vandesompele, J. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8:R19.PubMedCrossRefGoogle Scholar
  16. Huber, D. P., Erickson, M. L., Leutenegger, C. M., Bohlmann, J., and Seybold, S. J. 2007. Isolation and extreme sex-specific expression of cytochrome P450 genes in the bark beetle, Ips paraconfusus, following feeding on the phloem of host ponderosa pine, Pinus ponderosa. Insect Mol. Biol. 16:335–49.PubMedCrossRefGoogle Scholar
  17. Ivarsson, P., Blomquist, G. J., Seybold, S. J., 1997. In vitro production of the pheromone intermediates ipsdienone and ipsenone by the bark beetles Ips pini(Say) and I. paraconfusus Naturwissenschaften 84:454–7. Lanier (Coleoptera: Scolytidae).CrossRefGoogle Scholar
  18. Ivarsson, P., Tittiger, C., Blomquist, C., Borgeson, C. E., Seybold, S. J., and Blomquist, G. J. 1998. Pheromone precursor synthesis is localized in the metathorax of Ips paraconfusus Lanier (Coleoptera: Scolytidae). Naturwissenschaften. 85:507–511.CrossRefGoogle Scholar
  19. Keeling, C. I., Blomquist, G. J., and Tittiger, C. 2004. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae). Naturwissenschaften. 91:324–328.PubMedCrossRefGoogle Scholar
  20. Keeling, C. I., Bearfield, J. C., Young, S., Blomquist, G. J., and Tittiger, C. 2006. Effects of juvenile hormone on gene expression in the pheromone-producing midgut of the pine engraver beetle, Ips pini. Insect Molec. Biol. 15:207–216.CrossRefGoogle Scholar
  21. Kegley, S. J., Livingston, R. L., and Gibson, K. E. 2002. Pine engraver, Ips pini (Say) in the western United States. Bark beetles of North America image and fact sheet library.Google Scholar
  22. Lanier, G. N., and Cameron, E. A. 1969. Secondary sexual characters in the North American species of genus Ips (Coleoptera: Scolytidae). Can. Entomol. 101:862–870.CrossRefGoogle Scholar
  23. Lanier, G. N., Claesson, A., Stewart, T., Piston, J. J., and Silverstein, R. M. 1980. Ips pini: the basis for interpopulational differences in pheromone biology. J. Chem. Ecol. 6:677–687.CrossRefGoogle Scholar
  24. Livak, K. J., and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–8.PubMedCrossRefGoogle Scholar
  25. Martin, D., Bohlmann, J., Gershenzon, J., Francke, W., and Seybold, S. J. 2003. A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, Ips pini. Naturwissenschaften. 90:173–9.PubMedGoogle Scholar
  26. Miller, D., Gibson, K., Raffa, K. F., Seybold, S., Teale, S., and Wood, D. 1989. Inter- and intrapopulation variation of the pheromone, ipsdienol produced by male pine engravers, Ips pini (Say) (Coleoptera: Scolytidae). J. Chem. Ecol. 23:2013–2031.CrossRefGoogle Scholar
  27. Miller, D. R., Borden, J. H., and Slessor, J. H. 1997. Geographic variation in response of pine engraver, Ips pini, and associated species to pheromone, lanierone. J. Chem. Ecol. 23:2013–2031.CrossRefGoogle Scholar
  28. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  29. Sandstrom, P., Welch, W. H., Blomquist, G. J., and Tittiger, C. 2006. Functional expression of a bark beetle cytochrome P450 that hydroxylates myrcene to ipsdienol. Insect Biochem. Mol. Biol. 36:835–845.PubMedCrossRefGoogle Scholar
  30. Seybold, S. J., Quilici, D. R., Tillman, J. A., Vanderwel, D., Wood, D. L., and Blomquist, G. J. 1995. De novo biosynthesis of the aggregation pheromone components ipsenol and ipsdienol by the pine bark beetles Ips paraconfusus Lanier and Ips pini (Say) (Coleoptera: Scolytidae). Proc. Nat. Acad. Sci. U. S. A. 92:8393–8397.CrossRefGoogle Scholar
  31. Tillman, J. A., Lu, F., Staehle, L., Donaldson, Z., Dwinell, S. C., Tittiger, C., Hall, G. M., Storer, A. J., Blomquist, G. J., and Seybold, S. J. 2004. Juvenile hormone regulates de novo isoprenoid aggregation pheromone biosynthesis in pine bark beetles, Ips spp. (Coleoptera: Scolytidae), through transcriptional control of HMG-CoA reductase. J. Chem. Ecol. 30:2459–2494.PubMedCrossRefGoogle Scholar
  32. Tittiger, C., Blomquist, G. J., Ivarsson, P., Borgeson, C. E., and Seybold, S. J. 1999. Juvenile hormone regulation of HMG-R gene expression in the bark beetle Ips paraconfusus (Coleoptera: Scolytidae): implications for male aggregation pheromone biosynthesis. Cel. Mol. Life Sci. 55:121–7.CrossRefGoogle Scholar
  33. Young, J. C., Silverstein, R. M., and Birch, M. C. 1973. Aggregation pheromone of the beetle Ips confusus: Isolation and identification. J. Insect Physiol. 19:2273–2277.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pamela Sandstrom
    • 1
  • Matthew D. Ginzel
    • 1
    • 2
  • Jeremy C. Bearfield
    • 1
  • William H. Welch
    • 1
  • Gary J. Blomquist
    • 1
  • Claus Tittiger
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Nevada, RenoRenoUSA
  2. 2.Department of EntomologyPurdue UniversityWest LafayetteUSA

Personalised recommendations