Journal of Chemical Ecology

, Volume 34, Issue 11, pp 1422–1429 | Cite as

Amphibian Chemical Defense: Antifungal Metabolites of the Microsymbiont Janthinobacterium lividum on the Salamander Plethodon cinereus

  • Robert M. Brucker
  • Reid N. Harris
  • Christian R. Schwantes
  • Thomas N. Gallaher
  • Devon C. Flaherty
  • Brianna A. Lam
  • Kevin P. C. Minbiole
Article

Abstract

Disease has spurred declines in global amphibian populations. In particular, the fungal pathogen Batrachochytrium dendrobatidis has decimated amphibian diversity in some areas unaffected by habitat loss. However, there is little evidence to explain how some amphibian species persist despite infection or even clear the pathogen beyond detection. One hypothesis is that certain bacterial symbionts on the skin of amphibians inhibit the growth of the pathogen. An antifungal strain of Janthinobacterium lividum, isolated from the skin of the red-backed salamander Plethodon cinereus, produces antifungal metabolites at concentrations lethal to B. dendrobatidis. Antifungal metabolites were identified by using reversed phase high performance liquid chromatography, high resolution mass spectrometry, nuclear magnetic resonance, and UV-Vis spectroscopy and tested for efficacy of inhibiting the pathogen. Two metabolites, indole-3-carboxaldehyde and violacein, inhibited the pathogen’s growth at relatively low concentrations (68.9 and 1.82 μM, respectively). Analysis of fresh salamander skin confirmed the presence of J. lividum and its metabolites on the skin of host salamanders in concentrations high enough to hinder or kill the pathogen (51 and 207 μM, respectively). These results support the hypothesis that cutaneous, mutualistic bacteria play a role in amphibian resistance to fungal disease. Exploitation of this biological process may provide long-term resistance to B. dendrobatidis for vulnerable amphibians and serve as a model for managing future emerging diseases in wildlife populations.

Keywords

Janthinobacterium lividum Plethodon cinereus Batrachochytrium dendrobatidis Beneficial bacteria Violacein Indole-3-carboxaldehyde 

Supplementary material

10886_2008_9555_MOESM1_ESM.doc (144 kb)
Supplementary Figure 1RP-HPLC UV-Vis spectra of Janthinobacterium lividum extract, indole-3-carboxaldehyde standard, and violacein standard. UV-Vis spectra of (a) indole-3-carboxaldehyde and (b) violacein. Dashed lines refer to standards and solid lines refer to extracts from J. lividum. For both standards and extracts, the RP-HPLC retention time of indole-3-carboxaldehyde was approximately 9.06 min and violacein was approximately 11.15 min. (DOC 143 KB)
10886_2008_9555_MOESM2_ESM.doc (85 kb)
Supplementary Figure 2A composite* of 16S rRNA gene DGGE profiles of skin bacteria from the wild caught salamanders, Plethodon cinereus, and comparison with migration of 16S rRNA gene fragments of Janthinobacterium lividum. The J. lividum standard (right lane) run along with the wild-caught salamanders and the resulting bands were matched (indicated with an arrow). *A composite of two separate gels with the same standard for comparison. Lane one is superimposed from an analogous DGGE. (DOC 19.5 KB)
10886_2008_9555_MOESM3_ESM.doc (26 kb)
Supplementary Table 11H NMR (600 MHz) and HR-MS analysis of antifungal compounds isolated from a broth culture of Janthinobacterium lividum. (DOC 26.5 KB)
10886_2008_9555_MOESM4_ESM.doc (59 kb)
Supplementary Table 2Skin mucus depth determinations of Plethodon cinereus.a (DOC 61.5 KB)

References

  1. Belden, L. K., and Harris, R. N. 2007. Infectious diseases in wildlife: the community ecology context. Front. Ecol. Environ. 5:533–539.CrossRefGoogle Scholar
  2. Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., Slocombe, R., Ragan, M. A., Hyatt, A. D., Mcdonald, K. R., Hines, H. B., Lips, K. R., Marantelli, G., and Parkes, H. 1998. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. U. S. A. 95:9031–9036.PubMedCrossRefGoogle Scholar
  3. Briggs, C. J., Vredenburg, V. T., Knapp, R. A., and Rachowicz, L. J. 2005. Investigating the population-level effects of chytridiomycosis: an emerging infectious disease of amphibians. Ecology 86:3149–3159.CrossRefGoogle Scholar
  4. Brizzi, R., Delfino, G., and Pellegrini, R. 2002. Specialized mucous glands and their possible adaptive role in the males of some species of Rana (Amphibia, Anura). J. Morphol. 254:328–341.PubMedCrossRefGoogle Scholar
  5. Brucker, R. M., Baylor, C. M., Walters, R. L., Lauer, A., Harris, R. N., and Minbiole, K. P. C. 2008. The identification of 2,4-diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander Plethodon cinereus. J. Chem. Ecol. 43:39–43.CrossRefGoogle Scholar
  6. Currie, C. R., Poulsen, M., Mendenhall, J., Boomsma, J. J., and Billen, J. 2006. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83.PubMedCrossRefGoogle Scholar
  7. Daszak, P., Strieby, A., Cunningham, A. A., Longcore, J. E., Brown, C. C., and Porter, D. 2004. Experimental evidence that the bullfrog (Rana catsbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol. J. 14:201–207.Google Scholar
  8. Ducklow, H. W., and Mitchell, R. 1979. Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr. 24:715–725.CrossRefGoogle Scholar
  9. Durán, N., and Menck, C. F. M. 2001. Chromobacterium violaceum: A review of pharmacological and Industrial perspectives. Crit. Rev. Microbiol. 27:201–222.PubMedCrossRefGoogle Scholar
  10. Gutierrez-Lugo, M.-T., Woldemichael, G. M., Singh, M. P., Suarez, P. A., Maiese, W. M., Montenegro, G., and Timmermann, B. N. 2005. Isolation of three new naturally occurring compounds from the culture of Micromonospora sp. P1068. Nat. Prod. Res. 19:645–652.PubMedCrossRefGoogle Scholar
  11. Haas, D., and Degafo, G. 2005. Biological control of soil-borne pathogens by fluorescent Pseudomonas. Nat. Rev. Microbiol. 3:307–319.PubMedCrossRefGoogle Scholar
  12. Harris, R. N., James, T. Y., Lauer, A., Simon, M. A., and Patel, A. 2006. The amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3:53–56.CrossRefGoogle Scholar
  13. Lauer, A., Simon, M. A., Banning, J. L., André, E., Duncan, K., and Harris, R. N. 2007. Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia 3:630–640.CrossRefGoogle Scholar
  14. Lauer, A., Simon, M. A., Banning, J. L., Lam, B., and Harris, R. N. 2008. Diversity of cutaneous bacteria with antifungal activity isolated from the female four-toed salamanders. Int. Soc. Microb. Ecol. 2:145–157.Google Scholar
  15. Lips, K. R. 1999. Mass mortality and population declines of anurans at an upland site in western Panama. Conserv. Biol. 13:117–125.CrossRefGoogle Scholar
  16. Lips, K. R., Brem, F., Brenes, R., Reeve, J. D., Alford, R. A., Voyles, J., Carey, C., Livo, L., Pressier, A. P., and Collins, J. P. 2006. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl. Acad. Sci. U. S. A. 103:3165–3170.PubMedCrossRefGoogle Scholar
  17. Matz, C., Webb, J. S., Schupp, P. J., Phang, S. Y., Penesyan, A., Egan, S., Steinberg, P., and Kjelleberg, S. 2008. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. Pub. Libr. Sci. U. S. A. 7:3e2744.Google Scholar
  18. Mcfall-Ngai, M. J. 1999. Consequences of evolving with bacterial symbionts: insights from the squid–Vibrio associations. Annu. Rev. Ecol. Syst. 30:235–256.CrossRefGoogle Scholar
  19. Rachowicz, L. J., Knapp, R. A., Morgan, J. A., Stice, M. J., Vredenburg, V. T., Parker, J. M., and Briggs, C. J. 2006. Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87:1671–1683.PubMedCrossRefGoogle Scholar
  20. Rollins-Smith, L. A., Reinert, L. K., Miera, V., and Conlon, J. M. 2002. Antimicrobial peptide defenses of the Tarahumara frog, Rana tarahumarae. Biochem. Biophys. Res. Comm. 297:361–367.CrossRefGoogle Scholar
  21. Simmaco, M., Mignogna, G., and Barra, D. 1998. Antimicrobial peptides from amphibian skin: What do they tell us? Biopolymers 47:435–450.PubMedCrossRefGoogle Scholar
  22. Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fischman, D. L., and Waller, R. W. 2004. Status and trends of amphibian declines and extinctions wordwide. Science (Wash.) 306:1783–1786.CrossRefGoogle Scholar
  23. Woodhams, D. C., Ardipradja, K., Alford, R. A., Marantelli, G., Reinert, L. K., and Rollins-Smith, L. A. 2007a. Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim. Conserv. 10:409–417.CrossRefGoogle Scholar
  24. Woodhams, D. C., Vredenburg, V. T., Stice, M. J., Simon, M. A., Billheimer, D., Shakhtour, B., Shyr, Y., Briggs, C. J., Rollins-Smith, L. A., and Harris, R. N. 2007b. Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol. Conserv. 138:390–398.CrossRefGoogle Scholar
  25. Young, S., Berger, L., and Spear, R. 2007. Amphibian chytridiomycosis: strategies for captive management and conservation. Int. Zoo. Yb. 41:85–95.CrossRefGoogle Scholar
  26. Yue, Q., Miller, C. J., White, J. F., and Richardson, M. D. 2000. Isolation and characterization of fungal inhibitors from Epichloe festucae. J. Agric. Food Chem. 48:4687–4692.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Robert M. Brucker
    • 1
    • 2
  • Reid N. Harris
    • 2
  • Christian R. Schwantes
    • 1
  • Thomas N. Gallaher
    • 1
  • Devon C. Flaherty
    • 2
  • Brianna A. Lam
    • 2
  • Kevin P. C. Minbiole
    • 1
  1. 1.Department of Chemistry and BiochemistryJames Madison UniversityHarrisonburgUSA
  2. 2.Department of BiologyJames Madison UniversityHarrisonburgUSA

Personalised recommendations