Advertisement

Journal of Chemical Ecology

, Volume 34, Issue 10, pp 1349–1359 | Cite as

Effects of Plant Vascular Architecture on Aboveground–Belowground-Induced Responses to Foliar and Root Herbivores on Nicotiana tabacum

  • Ian KaplanEmail author
  • Rayko Halitschke
  • André Kessler
  • Sandra Sardanelli
  • Robert F. Denno
Article

Abstract

Herbivores induce systemic changes in plant traits, and the strength of these induced responses is often associated with the degree of vascular connectivity that links damaged and undamaged plant tissues. Although this phenomenon is known to occur aboveground in leaves, it is unknown whether or not leaf–root induction similarly follows the vascular architecture of plants. To test for this possibility, we manipulated foliar and root herbivory on tobacco (Nicotiana tabacum) by the leaf-chewing insect Spodoptera exigua and the root-galling nematode Meloidogyne incognita. Subsequent changes in secondary chemistry (alkaloids and phenolics) were measured in leaves and roots that were orthostichous (vertically aligned) and nonorthostichous (opposite) from the herbivore-damaged tissues. Aboveground caterpillar herbivory elicited stronger secondary chemical responses in orthostichous compared with nonorthostichous plant tissues, although the magnitude of this difference was greater in leaves than roots. However, belowground nematode herbivory did not affect the secondary chemistry of tobacco leaves, despite inducing strong local responses in roots. Thus, plant vascular architecture can mediate the magnitude of systemic induction in roots as well as in leaves, with stronger responses in tissues that are more closely aligned. As a result, herbivores that co-occur on the same sector of plant (both aboveground and belowground) may be more likely to affect one another via induced responses than herbivores that occur on plant tissues sharing fewer resources.

Keywords

Aboveground–belowground interactions Induced plant responses Orthostichy Plant sectoriality Root herbivory Vascular architecture 

Notes

Acknowledgements

Brian Crawford assisted with harvesting plants for secondary metabolite analyses. We thank Jen Thaler for the use of growth chamber space and rhodamine-B in the dye tracer experiment. The chemical characterization was supported by National Science Foundation grant DBI-0500550.

References

  1. Allard, H. A. 1942. Some aspects of the phyllotaxy of tobacco. J. Agric. Res. 64:49–55.Google Scholar
  2. Arnold, T. M., and Schultz, J. C. 2002. Induced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus. Oecologia 130:585–593.CrossRefGoogle Scholar
  3. Arnold, T., Appel, H., Patel, V., Stocum, E., Kavalier, A., and Schultz, J. C. 2004. Carbohydrate translocation determines the phenolic content of Populus foliage: a test of the sink-source model of plant defense. New Phytol. 164:157–164.CrossRefGoogle Scholar
  4. Barker, K. R., and Lucas, G. B. 1984. Nematode parasites of tobacco, pp. 213–242, in W. R. Nickle (ed.). Plant and Insect NematodesMarcel Dekker, New York.Google Scholar
  5. Barker, K. R., and Weeks, W. W. 1991. Relationships between soil and levels of Meloidogyne incognita and tobacco yield and quality. J. Nematol. 23:82–90.PubMedGoogle Scholar
  6. Bezemer, T. M., and Van Dam, N. M. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20:617–624.PubMedCrossRefGoogle Scholar
  7. Bezemer, T. M., Wagenaar, R., Van Dam, N. M., Van Der Putten, W. H., and Wäckers, F. L. 2004. Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury. J. Chem. Ecol. 30:53–67.PubMedCrossRefGoogle Scholar
  8. Bledsoe, T. M., and Orians, C. M. 2006. Vascular pathways constrain 13C accumulation in large root sinks of Lycopersicon esculentum (Solanaceae). Amer. J. Bot. 93:884–890.CrossRefGoogle Scholar
  9. Davis, J. M., Gordon, M. P., and Smit, B. A. 1991. Assimilate movement dictates remote sites of wound-induced gene expression in poplar leaves. Proc. Natl. Acad. Sci. U. S. A 88:2393–2396.PubMedCrossRefGoogle Scholar
  10. Denno, R. F., and McClure, M. S. 1983. Variable Plants and Herbivores in Natural and Managed Systems. Academic, New York.Google Scholar
  11. Ettema, C. H., and Wardle, D. A. 2002. Spatial soil ecology. Trends Ecol. Evol. 17:177–183.CrossRefGoogle Scholar
  12. Frost, C. J., Appel, H. M., Carlson, J. E., De Moraes, C. M., Mescher, M. C., and Schultz, J. C. 2007. Within-plant signaling via volatiles overcomes vascular constraints on systemic signaling and primes responses against herbivores. Ecol. Lett. 10:490–498.PubMedCrossRefGoogle Scholar
  13. Hanounik, S. B., and Osborne, W. W. 1975. Influence of Meloidogyne incognita on the content of amino acids and nicotine in tobacco grown under gnotobiotic conditions. J. Nematol. 7:332–336.PubMedGoogle Scholar
  14. Hanounik, S. B., and Osborne, W. W. 1977. The relationship between population density of Meloidogyne incognita and nicotine content of tobacco. Nematologica 23:147–152.CrossRefGoogle Scholar
  15. Hunter, M. D., and Price, P. W. 1992. Playing chutes and ladders—heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:724–732.Google Scholar
  16. Hussey, R. S., and Barker, K. R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Rep. 57:1025–1028.Google Scholar
  17. Jones, C. G., Hopper, R. F., Coleman, J. S., and Krischik, V. A. 1993. Control of systemically induced herbivore resistance by plant vascular architecture. Oecologia 93:452–456.CrossRefGoogle Scholar
  18. Jones, H., Martin, R. V., and Porter, H. K. 1959. Translocation of 14carbon in tobacco following assimilation of 14carbon dioxide by a single leaf. Ann. Bot. London 23:493–510.Google Scholar
  19. Kaplan, I., and Denno, R. F. 2007. Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol. Lett. 10:977–994.PubMedCrossRefGoogle Scholar
  20. Kaplan, I., Halitschke, R., Kessler, A., Sardanelli, S., and Denno, R. F. 2008. Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89:392–406.PubMedCrossRefGoogle Scholar
  21. Karban, R., and Baldwin, I. T. 1997. Induced Responses to Herbivory. The University of Chicago Press, Chicago.Google Scholar
  22. Keinänen, M., Oldham, N. J., and Baldwin, I. T. 2001. Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata. J. Agric. Food Chem. 49:3553–3558.PubMedCrossRefGoogle Scholar
  23. Mutikainen, P., Walls, M., and Ovaska, J. 1996. Herbivore-induced resistance in Betula pendula: the role of plant vascular architecture. Oecologia 108:723–727.CrossRefGoogle Scholar
  24. Orians, C. 2005. Herbivores, vascular pathways, and systemic induction: facts and artifacts. J. Chem. Ecol. 31:2231–2242.PubMedCrossRefGoogle Scholar
  25. Orians, C. M., Pomerleau, J., and Ricco, R. 2000. Vascular architecture generates fine scale variation in systemic induction of proteinase inhibitors in tomato. J. Chem. Ecol. 26:471–485.CrossRefGoogle Scholar
  26. Orians, C. M., Ardon, M., and Mohammad, B. A. 2002. Vascular architecture and patchy nutrient availability generates within-plant heterogeneity in plant traits important to herbivores. Am. J. Bot. 89:270–278.CrossRefGoogle Scholar
  27. Orians, C. M., Van Vuuren, M. M. I., Harris, N. L., Babst, B. A., and Ellmore, G. S. 2004. Differential sectoriality in long-distance transport in temperate tree species: evidence from dye flow, 15N transport, and vessel element pitting. Trees 18:501–509.CrossRefGoogle Scholar
  28. Rosenberg, M. S., Adams, D. C., and Gurevitch, J. 2000. MetaWin: Statistical Software for Meta-analysis, Version 2.0. Sinauer, Sunderland.Google Scholar
  29. Schittko, U., and Baldwin, I. T. 2003. Constraints to herbivore-induced systemic responses: bidirectional signaling along orthostichies in Nicotiana attenuata. J. Chem. Ecol. 29:763–770.PubMedCrossRefGoogle Scholar
  30. Shelton, A. L. 2005. Within-plant variation in glucosinolate concentrations of Raphanus sativus across multiple scales. J. Chem. Ecol. 31:1711–1732.PubMedCrossRefGoogle Scholar
  31. Sokal, R. R., and Rohlf, F. J. 1994. Biometry. Freeman, New York.Google Scholar
  32. Soler, R., Bezemer, T. M., Van Der Putten, W. H., Vet, L. E. M., and Harvey, J. A. 2005. Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J. Anim. Ecol. 74:1121–1130.CrossRefGoogle Scholar
  33. Soler, R., Bezemer, T. M., Cortesero, A. M., Van Der Putten, W. H., Vet, L. E. M., and Harvey, J. A. 2007. Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia 152:257–264.PubMedCrossRefGoogle Scholar
  34. Sprugel, D. G., Hinckley, T. M., and Schaap, W. 1991. The theory and practice of branch autonomy. Annu. Rev. Ecol. Syst. 22:309–334.CrossRefGoogle Scholar
  35. Stout, M. J., Workman, K. V., and Duffey, S. S. 1996. Identity, spatial distribution, and variability of induced chemical responses in tomato plants. Entomol. Exp. Appl. 79:255–271.CrossRefGoogle Scholar
  36. Trudgill, D. L., and Blok, V. C. 2001. Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopath. 39:53–77.CrossRefGoogle Scholar
  37. Van Dam, N. M., and Bezemer, T. M. 2006. Chemical communication between roots and shoots: towards an integration of aboveground and belowground induced responses in plants, pp. 127–143, in M. Dicke, and W. Takken (eds.). Chemical Ecology: from Gene to EcosystemSpringer, Dordrecht.Google Scholar
  38. Van Dam, N. M., and Raaijmakers, C. E. 2006. Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecology 16:17–24.CrossRefGoogle Scholar
  39. Van Dam, N. M., Harvey, J. A., Wäckers, F. L., Bezemer, T. M., Van Der Putten, W. H., and Vet, L. E. M. 2003. Interactions between aboveground and belowground induced responses against phytophages. Basic Appl. Ecol. 4:63–77.CrossRefGoogle Scholar
  40. Van Dam, N. M., Raaijmakers, C. E., and Van Der Putten, W. H. 2005. Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomol. Exp. Appl. 115:161–170.CrossRefGoogle Scholar
  41. Vereecke, D., Messens, E., Klarskov, K., De Bruyn, A., Van Montagu, M., and Goethals, K. 1997. Patterns of phenolic compounds in leafy galls of tobacco. Planta 201:342–348.CrossRefPubMedGoogle Scholar
  42. Viswanathan, D. V. and Thaler, J. S. 2004. Plant vascular architecture and within-plant spatial patterns in resource quality following herbivory. J. Chem. Ecol. 30:531–543.PubMedCrossRefGoogle Scholar
  43. Voelckel, C., and Baldwin, I. T. 2004. Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecol. Lett. 7:770–775.CrossRefGoogle Scholar
  44. Vovlas, N., Simoes, N. J. O., Sasanelli, N., Dos Santos, M. C. V., and Abrantes, I. M. D. 2004. Host–parasite relationships in tobacco plants infected with a root-knot nematode (Meloidogyne incognita) population from the Azores. Phytoparasitica 32:167–173.Google Scholar
  45. Vuorisalo, T., and Hutchings, M. J. 1996. On plant sectoriality, or how to combine the benefits of autonomy and integration. Vegetatio 127:3–8.CrossRefGoogle Scholar
  46. Wardle, D. A. 2002. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton University Press, Princeton.Google Scholar
  47. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H. H., Van Der Putten, W. H., and Wall, D. H. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–1633.PubMedCrossRefGoogle Scholar
  48. Watson, M. A., and Casper, B. B. 1984. Morphogenetic constraints on patterns of carbon distribution in plants. Annu. Rev. Ecol. Syst. 15:233–258.CrossRefGoogle Scholar
  49. Wheeler, T. A., Barker, K. R., and Schneider, S. M. 1991. Yield–loss models for tobacco infected with Meloidogyne incognita as affected by soil moisture. J. Nematol. 23:365–371.PubMedGoogle Scholar
  50. Zanne, A. E., Lower, S. S., Cardon, Z. G., and Orians, C. M. 2006. 15N partitioning in tomato: vascular constraints versus tissue demand. Funct. Plant Biol. 33:457–464.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ian Kaplan
    • 1
    Email author
  • Rayko Halitschke
    • 2
  • André Kessler
    • 2
  • Sandra Sardanelli
    • 1
  • Robert F. Denno
    • 1
  1. 1.Department of EntomologyUniversity of MarylandCollege ParkUSA
  2. 2.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA

Personalised recommendations