Journal of Chemical Ecology

, 34:1230 | Cite as

Soybean (Glycine max) Root Lignification Induced by Ferulic Acid. The Possible Mode of Action

  • W. D. dos Santos
  • M. L. L. Ferrarese
  • C. V. Nakamura
  • K. S. M. Mourão
  • C. A. Mangolin
  • O. Ferrarese-FilhoEmail author


Ferulic acid, in the form of feruloyl CoA, occupies a central position as an intermediate in the phenylpropanoid pathway. Due to the allelopathic function, its effects were tested on root growth, H2O2 and lignin contents, and activities of cinnamyl alcohol dehydrogenase (CAD, EC and peroxidase (POD, EC from soybean (Glycine max (L.) Merr.) root seedlings. Three-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0), with or without 1.0 mM ferulic acid in a growth chamber (25°C, 12/12 hr light/dark photoperiod, irradiance of 280 μmol m−2 s−1) for 24 or 48 hr. Exogenously supplied ferulic acid induced premature cessation of root growth, with disintegration of the root cap, compression of cells in the quiescent center, increase of the vascular cylinder diameter, and earlier lignification of the metaxylem. Moreover, the allelochemical decreased CAD activity and H2O2 level and increased the anionic isoform PODa5 activity and lignin content. The lignin monomer composition of ferulic acid-exposed roots revealed a significant increase of guaiacyl (G) units. When applied jointly with piperonylic acid (an inhibitor of the cinnamate 4-hydroxylase, C4H), ferulic acid increased lignin content. By contrast, the application of 3,4-(methylenedioxy) cinnamic acid (an inhibitor of the 4-coumarate:CoA ligase, 4CL) with ferulic acid did not. Taken together, these results suggest that ferulic acid may be channeled into the phenylpropanoid pathway (by the 4CL reaction) and, further, may increase the lignin monomer amount solidifying the cell wall and restricting the root growth.


Allelopathy Cinamyl alcohol dehydrogenase Lignin Phenylpropanoid pathway Root growth Soybean 



Research was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). O. Ferrarese-Filho and M.L.L. Ferrarese are research fellows of CNPq. W.D. dos Santos is the recipient of a CNPq fellowship. The authors thank Dr. Wanderley de Souza and Maria de Fátima P. S. Machado for cooperation in extending instrumental facilities. The authors thank Aparecida M.D. Ramos and Gisele A. Bubna for their technical assistance.


  1. Baleroni, C. R. S., Ferrarese, M. L. L., Braccini, A. L., Scapim, C. A., and Ferrarese-Filho, O. 2000. Effects of ferulic and p-coumaric acids on canola (Brassica napus L. cv. Hyola 401) seed germination. Seed Sci. Technol. 28:201–207.Google Scholar
  2. Baziramakenga, R., Leroux, G. D., and Simard, R. R. 1995. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. J. Chem. Ecol. 21:1271–1285.CrossRefGoogle Scholar
  3. Baziramakenga, R., Leroux, G. D., and Simard, R. R. 1997. Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings. Can. J. Bot. 75:445–450.Google Scholar
  4. Berlyn, G. P., and Miksche, J. P. 1976. Botanical microtechnique and cytochemistry. The Iowa State University Press, Ames, Iowa.Google Scholar
  5. Boerjan, W., Ralph, J., and Baucher, M. 2003. Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–546.PubMedCrossRefGoogle Scholar
  6. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.PubMedCrossRefGoogle Scholar
  7. Burgos, N. R., Talbert, R. E., Kim, K. S., and Kuk, Y. I. 2004. Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemical from rye (Secale cereale). J. Chem. Ecol. 30:671–689.PubMedCrossRefGoogle Scholar
  8. Chen, M., and McClure, J. W. 2000. Altered lignin composition in phenylalanine ammonia-lyase-inhibited radish seedlings: implications for seed-derived sinapoyl esters as lignin precursors. Phytochemistry. 53:365–370.PubMedCrossRefGoogle Scholar
  9. Chen, F., Reddy, M. S. S., Temple, S., Jackson, L., Shadle, G., and Dixon, R. A. 2006. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J. 48:113–124.PubMedCrossRefGoogle Scholar
  10. Chon, S.-U., Choi, S.-K., Jung, S., Jang, H.-G., Pyo, B.-S., and Kim, S.-M. 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Protection. 21:1077–1082.CrossRefGoogle Scholar
  11. Christensen, J. H., Bauw, G., Welinder, K. G., Van Montagu, M., and Boerjan, W. 1998. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol. 118:125–135.PubMedCrossRefGoogle Scholar
  12. Cruz-Ortega, R., Anaya, A. L., Hernández-Bautista, B. E., and Laguna-Hernández, G. 1998. Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia. J. Chem. Ecol. 24:2039–2057.CrossRefGoogle Scholar
  13. Donaldson, L. A. 2001. Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry. 57:859–876.PubMedCrossRefGoogle Scholar
  14. de Ascensao, A. R. F. D. C., and Dubery, I. A. 2003. Soluble and wall-bound phenolics and phenolics polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f. sp. cubense. Phytochemistry. 63:679–686.PubMedCrossRefGoogle Scholar
  15. dos Santos, W. D., Ferrarese, M. L. L., Finger, A., Teixeira, A. C. N., and Ferrarese-Filho, O. 2004. Lignification and related enzymes in soybean root growth-inhibition by ferulic acid. J. Chem. Ecol. 30:1199–1208.CrossRefGoogle Scholar
  16. dos Santos, W. D., Ferrarese, M. L. L., and Ferrarese-Filho, O. 2006. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase in soybean roots. Plant Physiol. Biochem. 44:511–515.PubMedCrossRefGoogle Scholar
  17. Einhellig, F. A. 1995. Characterization of the mechanisms of allelopathy. Modeling and experimental approaches, pppp. 132–141, in H. H. Cheng, Inderjit, and K. M. M. Dakshini (eds.). Allelopathy, Organisms, Processes and ApplicationsAmerican Chemical Society, Washington, DC.Google Scholar
  18. Ferrarese, M. L. L., Souza, N. E., Rodrigues, J. D., and Ferrarese-Filho, O. 2001. Carbohydrate and lipid status in soybean roots influenced by ferulic acid uptake. Acta Physiol. Plant. 23:421–427.CrossRefGoogle Scholar
  19. Ferrarese, M. L. L., Zottis, A., and Ferrarese-Filho, O. 2002. Protein-free lignin quantification in soybean (Glycine max) roots. Biologia. 57:541–543.Google Scholar
  20. Gerrits, P. O. 1991. The Application of Glycol Methacrylate in Histotechnology: Some Fundamental Principles. Department of Anatomy and Embryology State University Groningen, Netherlands.Google Scholar
  21. Hamada, K., Ysutsumi, Y., and Nishida, T. 2003. Treatment of poplar callus with ferulic and sinapic acids II. Effects on related monolignol biosynthetic enzyme activities. J. Wood Sci. 49:366–370.CrossRefGoogle Scholar
  22. Ho, L. C. M. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:355–378.CrossRefGoogle Scholar
  23. Hsu, Y. T., and Kao, C. H. 2007. Heat shock-mediated H2O2 accumulation and protection against CD toxicity in rice seedlings. Plant Soil. 300:137–147.CrossRefGoogle Scholar
  24. Iiyama, K., Lam, T. B. T., and Stone, B. A. 1990. Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry. 29:733–737.CrossRefGoogle Scholar
  25. Inderjit, and Duke, S. O. 2003. Ecophysiological aspects of allelopathy. Planta. 217:529–539.PubMedCrossRefGoogle Scholar
  26. Jensen, W. A. 1962. Botanical histochemistry, principles and practice. W. H. Freeman, San Francisco.Google Scholar
  27. Johansen, D. A. 1940. Plant microtechnique. McGraw-Hill Book Co., New York.Google Scholar
  28. Kaur, H., Inderjit, and Kaushik, S. 2005. Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiol. Biochem. 43:77–81.PubMedCrossRefGoogle Scholar
  29. Kim, H., Ralph, J., Yahiaoui, N., Pean, M., and Boudet, A. M. 2000. Cross-coupling of hydroxycinnamyl aldehydes into lignins. Organic. Lett. 2:2197–2200.CrossRefGoogle Scholar
  30. Lam, T. B. T., Kadoya, K., and Iiyama, K. 2001. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry. 57:987–992.PubMedCrossRefGoogle Scholar
  31. Li, L., Cheng, X. F., Leshkevich, J., Umezawa, T., and Harding, S. A. 2001. The last step of syringyl monolignols biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell. 13:1567–1585.PubMedCrossRefGoogle Scholar
  32. Liu, D. L., and Lovett, J. V. 1993. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J. Chem. Ecol. 19:2231–2244.CrossRefGoogle Scholar
  33. Mangolin, C. A., Prioli, A. J., and Machado, M. F. P. S. 1994. Isozyme patterns in callus cultures and in plants regenerated from calli of Cereus peruvianus (cactaceae). Biochem. Gen. 32:237–247.CrossRefGoogle Scholar
  34. O’Brien, T. P., Feder, N., and MCcully, M. E. 1964. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma. 59:368–373.CrossRefGoogle Scholar
  35. Passardi, F., Cosio, C., Penel, C., and Dunand, C. 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell. Rep. 24:255–265.PubMedCrossRefGoogle Scholar
  36. Pereira, A. J., Vidigal-Filho, P. S., Lapenta, A. S., and Machado, M. F. P. S. 2001. Differential esterase expression in leaves of Manihot esculenta Crantz infected with Xanthomonas axonopodis pv. manihotis. Biochem. Genet. 39:289–296.PubMedCrossRefGoogle Scholar
  37. Politycka, B. 1996. Peroxidase activity and peroxidation lipidic in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiol. Plant. 18:365–370.Google Scholar
  38. Ros Barceló, A., Gómez Ros, L. V., Gabaldó, N. C., López-Serrano, M., Pomar, F., Carrión, J. S., and Pedreno, M. A. 2004. Basic peroxidases: the gateway from lignin evolution? Phytochem. Rev. 3:61–78.CrossRefGoogle Scholar
  39. Sánchez, M., Peña, M. J., Revilla, G., and Zarra, I. 1996. Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinaster hypocotyl. Plant Physiol. 111:941–946.PubMedGoogle Scholar
  40. Schoch, G. A., Nikov, G. N., Alworth, W. L., and Werck-Reichhart, D. 2002. Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells. Plant Physiol. 130:1022–1031.PubMedCrossRefGoogle Scholar
  41. Shann, J. R., and Blum, U. 1987a. The uptake of ferulic acid and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry. 26:2959–2964.CrossRefGoogle Scholar
  42. Shann, J. R., and Blum, U. 1987b. The utilization of exogenously applied ferulic acid in lignin biosynthesis. Phytochemistry. 26:2977–2982.CrossRefGoogle Scholar
  43. Wallace, G., and Fry, S. C. 1999. Action of diverse peroxidases and laccases on six cell wall-related phenolic compounds. Phytochemistry. 52:769–773.CrossRefGoogle Scholar
  44. Weir, T. L., Park, S. W., and Vivanco, J. M. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol. 7:472–479.PubMedCrossRefGoogle Scholar
  45. Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322:681–692.PubMedGoogle Scholar
  46. Yamauchi, K., and Fukushima, K. 2004. The regulation from guaiacyl to syringyl lignin in the differentiating xylem of Robinia pseudacacia. C. R. Biologies. 327:791–797.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • W. D. dos Santos
    • 1
  • M. L. L. Ferrarese
    • 1
  • C. V. Nakamura
    • 1
  • K. S. M. Mourão
    • 1
  • C. A. Mangolin
    • 1
  • O. Ferrarese-Filho
    • 1
    Email author
  1. 1.Laboratory of Plant Biochemistry, Department of BiochemistryUniversity of MaringáMaringáBrazil

Personalised recommendations