Journal of Chemical Ecology

, Volume 34, Issue 9, pp 1242–1252 | Cite as

Activated Chemical Defense in Marine Sponges—a Case Study on Aplysinella rhax

Article

Abstract

Activated chemical defense, i.e., the rapid conversion of precursor molecules to defensive compounds following tissue damage, has been well documented for terrestrial and marine plants; but evidence for its presence in sessile marine invertebrates remains scarce. We observed a wound-activated conversion of psammaplin A sulfate to psammaplin A in tissue of the tropical sponge Aplysinella rhax. The conversion is rapid (requiring only seconds), the turnover rate increases with increasing wounding activity (e.g., ~20% after tissue stabbing vs. ~85% after tissue grinding), and is likely enzyme-catalyzed (no reaction in the absence of water and inhibition of the conversion by heat). Fish feeding assays with the pufferfish Canthigaster solandri, an omnivorous sponge predator, revealed an increased anti-feeding activity by the conversion product psammaplin A compared to the precursor psammaplin A sulfate. We propose that the wound-activated formation of psammaplin A in A. rhax is an activated defense targeted against predator species that are not efficiently repelled by the sponge’s constitutive chemical defense. Recent observations of conversion reactions also in other sponge species indicate that more activated defenses may exist in this phylum. Based on the findings of this study, we address the question whether activated defenses may be more common in sponges—and perhaps also in other sessile marine invertebrates—than hitherto believed.

Keywords

Wound-activated bioconversion Aplysinella rhax Verongida Psammaplin A Direct induced defense Feeding deterrent 

Notes

Acknowledgments

NMR and LC/MS analyses were conducted by T. Hemscheidt from the Department of Chemistry, University of Hawaii. D. Taitano and B. Antolin helped with the feeding assays and the compound extraction. L. Goldman and N. Pioppi assisted in sponge collection. We thank C. Kohlert-Schupp for interesting discussions, A. Kerr for critical proofreading of the manuscript and advice in statistical matters, as well as two anonymous reviewers whose comments greatly improved this manuscript. CT gratefully acknowledges support with a Fedodor Lynen Fellowship from the Alexander von Humboldt-Foundation, Bonn. This research was supported by NIH MBRS SCORE grant SO6-GM-44796-15 and SO6-GM-44796-16a to PS. This is University of Guam Marine Laboratory contribution number 613.

References

  1. Byun, D. S., Kim, D. S., Godber, J. S., Nam, S. W., Oh, M. J., Shim, H. S., and Kim, H. R. 2004. Isolation and characterization of marine bacterium producing arylsulfatase. J. Microbiol. Biotechnol. 14:1134–1141.Google Scholar
  2. Ciminiello, P., Costantino, V., Fattorusso, E., Magno, S., Mangoni, A., and Pansini, M. 1994. Chemistry of Verongida sponges.2. Constituents of the Caribbean sponge Aplysina fistularis forma fulva. J. Nat. Prod. 57:705–712.CrossRefGoogle Scholar
  3. Ciminiello, P., Fattorusso, E., Magno, S., and Pansini, M. 1996. Chemistry of Verongida sponges. 6. Comparison of the secondary metabolic composition of Aplysina insularis and Aplysina fulva. Biochem. Syst. Ecol. 24:105–107.CrossRefGoogle Scholar
  4. Clausen, T. P., Reichardt, P. B., Bryant, J. P., Werner, R. A., Post, K., and Frisby, K. 1989. Chemical model for short-term induction in quaking aspen (Populus tremuloides) foliage against herbivores. J. Chem. Ecol. 15:2335–2346.CrossRefGoogle Scholar
  5. De Silva, E. D., and Scheuer, P. J. 1981. Three new sesterterpenoid antibiotics from the marine sponge Luffariella variabilis (Polejaff). Tetrahedron Lett. 22:3147–3150.CrossRefGoogle Scholar
  6. Ebel, R., Brenzinger, M., Kunze, A., Gross, H. J., and Proksch, P. 1997. Wound activation of protoxins in marine sponge Aplysina aerophoba. J. Chem. Ecol. 23:1451–1462.CrossRefGoogle Scholar
  7. Ettinger-Epstein, P., Motti, C. A., De Nys, R., Wright, A. D., Battershill, C. N., and Tapiolas, D. M. 2007. Acetylated sesterterpenes from the Great Barrier Reef sponge Luffariella variabilis. J. Nat. Prod. 70:648–651.PubMedCrossRefGoogle Scholar
  8. Fahey, J. W., Zalcmann, A. T., and Talalay, P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51.PubMedCrossRefGoogle Scholar
  9. Fattorusso, E., Minale, L., and Sodano, G. 1970. Aeroplysinin-1, a new bromo-compound from Aplysina aerophoba. J. Chem. Soc. D 12:751–753.CrossRefGoogle Scholar
  10. Gahan, P. B. 1981. Cell senescence and death in plants, pp. 145–169, in I. D. Bowen, and R. A. Lockshin (eds.). Cell Death in Biology and PathologyChapman & Hall, London.Google Scholar
  11. Hällgren, J., and Öquist, G. 1990. Adaptations to low temperatures, pp. 265–293, in R. G. Alscher, and J. R. Cumming (eds.). Stress Responses in Plants: Adaptation and Acclimation MechanismsWiley, New York.Google Scholar
  12. Jiang, Y. H., Ahn, E. Y., Ryu, S. H., Kim, D. K., Park, J. S., Yoon, H. J., You, S., Lee, B. J., Lee, D. S., and Jung, J. H. 2004. Cytotoxicity of psammaplin A from a two-sponge association may correlate with the inhibition of DNA replication. BMC Cancer 4:70.PubMedCrossRefGoogle Scholar
  13. Jones, R. P. 1989. Biological principles of the effects of ethanol: a review. Enzyme Microb. Technol. 11:130–152.CrossRefGoogle Scholar
  14. Jung, V., and Pohnert, G. 2001. Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyne. Tetrahedron 57:7169–7172.CrossRefGoogle Scholar
  15. Jung, V., Thibaut, T., Meinesz, A., and Pohnert, G. 2002. Comparison of the wound-activated transformation of caulerpenyne by invasive and noninvasive Caulerpa species of the Mediterranean. J. Chem. Ecol. 28:2091–2105.PubMedCrossRefGoogle Scholar
  16. Kernan, M. R., Faulkner, D. J., and Jacobs, R. S. 1987. The luffariellins, novel antiinflammatory sesterterpenes of chemotaxonomic importance from the marine sponge Luffariella variabilis. J. Org. Chem. 52:3081–3083.CrossRefGoogle Scholar
  17. Kim, D., Lee, I. S., Jung, J. H., Lee, C. O., and Choi, S. U. 1999. Psammaplin A, a natural phenolic compound, has inhibitory effect on human topoisomerase II and is cytotoxic to cancer cells. Anticancer Res. 19:4085–4090.PubMedGoogle Scholar
  18. Klibanov, A. M. 2001. Improving enzymes by using them in organic solvents. Nature 409:241–246.PubMedCrossRefGoogle Scholar
  19. Lindquist, N. 2002. Tridentatols D–H, nematocyst metabolites and precursors of the activated chemical defense in the marine hydroid Tridentata marginata (Kirchenpauer 1864). J. Nat. Prod. 65:681–684.PubMedCrossRefGoogle Scholar
  20. Lindquist, N., Lobkovsky, E., and Clardy, J. 1996. Tridentatols A–C, novel natural products of the marine hydroid Tridentata marginata. Tetrahedron Lett. 37:9131–9134.CrossRefGoogle Scholar
  21. Matile, P. 1984. The toxic compartment of plant cells. Naturwissenschaften 71:18–24.CrossRefGoogle Scholar
  22. Miralto, A., Barone, G., Romano, G., Poulet, S. A., Ianora, A., Russo, G. L., Buttino, I., Mazzarella, G., Laabir, M., Cabrini, M., and Giacobbe, M. G. 1999. The insidious effect of diatoms on copepod reproduction. Nature 402:173–176.CrossRefGoogle Scholar
  23. Mraz, W., and Jatzkewitz, H. 1974. Cerebroside sulphatase activity of arylsulphatases from various invertebrates. Hoppe-Seyler's Z. Physiol. Chem. 355:33–44.PubMedGoogle Scholar
  24. Myers, R. F. 1991. Micronesian reef fishes. Coral, Barrigada, Guam.Google Scholar
  25. Newman, D. J., and Cragg, G. M. 2004. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67:1216–1238.PubMedCrossRefGoogle Scholar
  26. Paul, V. J., and Puglisi, M. P. 2004. Chemical mediation of interactions among marine organisms. Nat. Prod. Rep. 21:189–209.PubMedCrossRefGoogle Scholar
  27. Paul, V. J., and Van Alstyne, K. L. 1992. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar. Biol. Ecol. 160:191–203.CrossRefGoogle Scholar
  28. Pham, N. B., Butler, M. S., and Quinn, R. J. 2000. Isolation of psammaplin A 11¢-sulfate and bisaprasin 11¢-sulfate from the marine sponge Aplysinella rhax. J. Nat. Prod. 63:393–395.PubMedCrossRefGoogle Scholar
  29. Pohnert, G. 2000. Wound-activated chemical defense in unicellular planktonic algae. Angew. Chem. Int. Ed. 39:4352–4254.CrossRefGoogle Scholar
  30. Pohnert, G. 2002. Phospholipase A(2) activity triggers the wound-activated chemical defense in the diatom Thalassiosira rotula. Plant. Physiol. 129:103–111.PubMedCrossRefGoogle Scholar
  31. Pohnert, G. 2004. Chemical defense strategies of marine organisms, pp. 179–219, in S. Schulz (ed.). Topics in Current Chemistry, Volume 239: The Chemistry of Pheromones and Other Semiochemicals ISpringer, Berlin.CrossRefGoogle Scholar
  32. Puyana, M., Fenical, W., and Pawlik, J. R. 2003. Are there activated chemical defenses in sponges of the genus Aplysina from the Caribbean? Mar. Ecol. Prog. Ser. 246:127–135.CrossRefGoogle Scholar
  33. Richelle-Maurer, E., De Kluijver, M. J., Feio, S., Gaudencio, S., Gaspar, H., Gomez, R., Tavares, R., Van-Der-Vyver, G., and Soest, R. W. M. V. 2003. Localization and ecological significance of oroidin and sceptrin in the Caribbean sponge Agelas conifera. Biochem. Syst. Ecol. 31:1073–1091.CrossRefGoogle Scholar
  34. Schupp, P. J., and Paul, V. J. 1994. Calcium carbonate and secondary metabolites in tropical seaweeds—variable effects on herbivorous fishes. Ecology 75:1172–1185.CrossRefGoogle Scholar
  35. Schupp, P., Eder, C., Paul, V., and Proksch, P. 1999. Distribution of secondary metabolites in the sponge Oceanapia sp. and its ecological implications. Mar. Biol. 135:573–580.CrossRefGoogle Scholar
  36. Shin, J., Lee, H. S., Seo, Y., Rho, J. R., Cho, K. W., and Paul, V. J. 2000. New bromotyrosine metabolites from the sponge Aplysinella rhax. Tetrahedron 56:9071–9077.CrossRefGoogle Scholar
  37. Sterner, O., Bergman, R., Kihlberg, J., and Wickberg, B. 1985. The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defense system. J. Nat. Prod. 48:279–288.CrossRefGoogle Scholar
  38. Stoewsand, G. S. 1995. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables—a review. Food Chem. Toxicol. 33:537–543.PubMedCrossRefGoogle Scholar
  39. Tabudravu, J. N., Eijsink, V. G. H., Gooday, G. W., Jaspars, M., Komander, D., Legg, M., Synstad, B., and Van Aalten, D. M. F. 2002. Psammaplin A, a chitinase inhibitor isolated from the Fijian marine sponge Aplysinella rhax. Bioorg. Med. Chem. 10:1123–1128.PubMedCrossRefGoogle Scholar
  40. Teeyapant, R., and Proksch, P. 1993. Biotransformation of brominated compounds in the marine sponge Verongia aerophoba. Evidence for an induced chemical defense? Naturwissenschaften 80:369–370.CrossRefGoogle Scholar
  41. Thompson, J. E., Barrow, K. D., and Faulkner, D. J. 1983. Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of the marine sponge Aplysina fistularis. Acta Zool. Stockh. 64:199–210.CrossRefGoogle Scholar
  42. Thoms, C., and Schupp, P. J. 2007. Chemical defense strategies in sponges: a review, pp. 627–637, in M. R. Custódio, G. Lôbo-Hajdu, E. Hajdu, and G. Muricy (eds.). Porifera Research—Biodiversity, Innovation and Sustainability. Série Livros 28Museu Nacional, Rio de Janeiro.Google Scholar
  43. Thoms, C., Ebel, R., and Proksch, P. 2006. Activated chemical defense in Aplysina sponges revisited. J. Chem. Ecol. 32:97–123.PubMedCrossRefGoogle Scholar
  44. Turon, X., Becerro, M. A., and Uriz, M. J. 2000. Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res. 301:311–322.PubMedCrossRefGoogle Scholar
  45. Van Alstyne, K. L., and Houser, L. T. 2003. Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Mar. Ecol. Prog. Ser. 250:175–181.CrossRefGoogle Scholar
  46. Van Alstyne, K. L., Wolfe, G. V., Freidenburg, T. L., Neill, A., and Hicken, C. 2001. Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar. Ecol. Prog. Ser. 213:53–65.CrossRefGoogle Scholar
  47. Wajant, H., and Effenberger, F. 1996. Hydroxynitrile lyases of higher plants. Biol. Chem. 377:611–617.PubMedGoogle Scholar
  48. Weber, F. J., and Debont, J. A. M. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta-Rev. Biomembr. 1286:225–245.Google Scholar
  49. Weiss, B., Ebel, R., Elbrächter, M., Kirchner, M., and Proksch, P. 1996. Defense metabolites from the marine sponge Verongia aerophoba. Biochem. Syst. Ecol. 24:1–12.CrossRefGoogle Scholar
  50. Wittstock, U., and Gershenzon, J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5:300–307.PubMedCrossRefGoogle Scholar
  51. Wolfe, G. V., Steinke, M., and Kirst, G. O. 1997. Grazing-activated chemical defence in a unicellular marine alga. Nature 387:894–897.CrossRefGoogle Scholar
  52. Zagrobelny, M., Bak, S., Rasmussen, A. V., Jorgensen, B., Naumann, C. M., and Moller, B. L. 2004. Cyanogenic glucosides and plant–insect interactions. Phytochemistry 65:293–306.PubMedCrossRefGoogle Scholar
  53. Zar, J. H. 1999. Biostatistical analysis. Prentice-Hall, Upper Saddle River, New Jersey.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Jena School for Microbial CommunicationFriedrich Schiller University JenaJenaGermany
  2. 2.University of Guam Marine LaboratoryUOG StationMangilaoUSA

Personalised recommendations