Journal of Chemical Ecology

, 34:1219 | Cite as

Production and Diversity of Volatile Terpenes from Plants on Calcareous and Siliceous Soils: Effect of Soil Nutrients

  • Elena OrmeñoEmail author
  • Virginie Baldy
  • Christine Ballini
  • Catherine Fernandez


Fertilizer effects on terpene production have been noted in numerous reports. In contrast, only a few studies have studied the response of leaf terpene content to naturally different soil fertility levels. Terpene content, as determined by gas chromatography/mass spectrometry/flame ionization detector, and growth of Pinus halepensis, Rosmarinus officinalis, and Cistus albidus were studied on calcareous and siliceous soils under field conditions. The effect of nitrogen (N) and extractable phosphorus (PE) from these soils on terpenes was also investigated since calcareous soils mainly differ from siliceous soils in their higher nutrient loadings. Rich terpene mixtures were detected. Twenty-one terpenes appeared in leaf extracts of R. officinalis and C. albidus and 20 in P. halepensis. Growth of all species was enhanced on calcareous soils, while terpene content showed a species-specific response to soil type. The total monoterpene content of P. halepensis and that of some major compounds (e.g., δ-terpinene) were higher on calcareous than on siliceous soils. A significant and positive relationship was found between concentration of N and PE and leaf terpene content of this species. These findings suggest that P. halepensis may respond to an environment characterized by increasing soil deposition, by allocating carbon resources to the synthesis of terpene defense metabolites without growth reduction. Results obtained for R. officinalis showed high concentrations of numerous major monoterpenes (e.g., myrcene, camphor) in plants growing on calcareous soils, while α-pinene, β-caryophyllene, and the total sesquiterpene content were higher on siliceous soils. Finally, only alloaromadendrene and δ-cadinene of C. albidus showed higher concentrations on siliceous soils. Unlike P. halepensis, soil nutrients were not involved in terpene variation in calcareous and siliceous soils of these two shrub species. Possible ecological explanations on the effect of soil type for these latter two species as well as the ecological explanation of rich terpene mixtures are discussed.


Monoterpenes Sesquiterpenes Terpene diversity Nitrogen Phosphorus pH Allelopathy 



This research was primarily funded by the French Agriculture Minister (DERF), the Environmental Agency (ADEME), and the Provence-Alpes-Côtes d’Azur (PACA) region. Authors wish Sylvie Dupouyet and Dr. Christiane Rolando for their collaboration in measurement campaigns, Laboratory of Chemistry and Environment (LCE, University of Provence, FRE 2704) for soil analysis, and Stephane Greff for his help using analytical methods. We thank Mr. Michael Paul for improvements to the English. All experiments conducted in this study comply with the French laws.


  1. Adams, R. P. 1989. Identification of essential oils by ion trap mass spectroscopy. Harcourt Brace Jovanovivh, San Diego, USA.Google Scholar
  2. Albert, A., Jahandiez, E. 1985. Catalogue des plantes vasculaires du Var. Museum d’histoire naturelle de Toulon, Paris.Google Scholar
  3. Baldwin, I. T., Kessler, A., and Halitschke, R. 2002. Volatile signaling in plant–plant–herbivore interactions: what is real? Curr. Opin. Plant Biol. 5:351–354.PubMedCrossRefGoogle Scholar
  4. Barnola, L. F., and Cedeño, A. 2000. Inter-population differences in the essential oils of Pinus caribaea needles. Biochem. Syst. Ecol. 28:923–931.CrossRefGoogle Scholar
  5. Bjorkman, C., Larsson, S., and Gref, R. 1991. Effects of nitrogen-fertilization on pine needle chemistry and sawfly performance. Oecologia 86:202–209.CrossRefGoogle Scholar
  6. Bjorkman, C., Kyto, M., Larsson, S., and Niemela, P. 1998. Different responses of two carbon-based defences in Scots pine needles to nitrogen fertilization. Ecoscience 5:502–507.Google Scholar
  7. Bottega, S., and Corsi, G. 2000. Structure, secretion and possible functions of calyx glandular hairs of Rosmarinus officinalis L. (Lamiaceae). Bot. J. Linn. Soc. 132:325–335.CrossRefGoogle Scholar
  8. Caissard, J. C., Meekijjironenroj, A., Baudino, S., and Anstett, M. C. 2004. Localization of production and emission of pollinator attractant on whole leaves of Chamaerops humilis (Arecaceae). Am. J. Bot. 91:1190–1199.CrossRefGoogle Scholar
  9. Canadell, J., and Vila, M. 1992. Variation in tissue element concentrations in Quercus ilex L over a range of different soils. Vegetatio 100:273–282.CrossRefGoogle Scholar
  10. Castells, E., and Peñuelas, J. 2003. Is there a feedback between N availability in siliceous and calcareous soils and Cistus albidus leaf chemical composition? Oecologia 136:183–192.PubMedCrossRefGoogle Scholar
  11. Close, D. C., McArthur, C., Pietrzykowski, E., Fitzgerald, H., and Paterson, S. 2004. Evaluating effects of nursery and post-planting nutrient regimes on leaf chemistry and browsing of eucalypt seedlings in plantations. For. Ecol. Manag. 200:101–112.CrossRefGoogle Scholar
  12. D'Alessandro, M., and Turlings, T. C. J. 2006. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32.PubMedCrossRefGoogle Scholar
  13. Delfine, S., Loreto, F., Pinelli, P., Tognetti, R., and Alvino, A. 2005. Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agr. Ecosyst. Environ. 106:243–252.CrossRefGoogle Scholar
  14. Diab, Y., Auezova, L., Chebib, H., Chalchat, J. C., and Figueredo, G. 2002. Chemical composition of Lebanese rosemary (Rosmarinus officinalis L.) essential oil as a function of the geographical region and the harvest time. J. Essent. Oil. Res. 14:449–452.Google Scholar
  15. Dicke, M., vanPoecke, R. M. P., and deBoer, J. G. 2003. Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl. Ecol. 4:27–42.CrossRefGoogle Scholar
  16. Dob, T., Berramdane, T., and Chelgoum, C. 2005. Chemical composition of essential oil of Pinus halepensis Miller growing in Algeria. C. R. Chimie. 8:1939–1945.Google Scholar
  17. Elamrani, A., Zrira, S., Benjilali, B., and Berrada, M. 2000. A study of Moroccan rosemary oils. J. Essent. Oil. Res. 12:487–495.Google Scholar
  18. Firn, R. D., and Jones, C. G. 2003. Natural products—a simple model to explain chemical diversity. Nat. Prod. Rep. 20:382–391.PubMedCrossRefGoogle Scholar
  19. Flamini, G., Cioni, P. L., Morelli, I., Maccioni, S., and Baldini, R. 2004. Phytochemical typologies in some populations of Myrtus communis L. on caprione promontory (East Liguria, Italy). Food Chem. 85:599–604.CrossRefGoogle Scholar
  20. Flesh, V., Jacques, M., Cosson, L., Teng, B. P., Petiard, V., and Balz, J. P. 1992. Relative importance of growth and light level on terpene content of Gingo biloba. Phytochemistry 31:1941–1945.CrossRefGoogle Scholar
  21. Ghanmi, M., ElAbid, A., Chaouch, A., Aafi, A., Aberchane, M., ElAlami, A., and Farah, A. 2005. The yield and the chemical composition of turpentine of the maritime Pine (Pinus pinaster) and the Aleppo Pine (Pinus halepensis) of Morocco. Acta Bot. Gallica 152:3–10.Google Scholar
  22. Giordani, R., Regli, P., Kaloustian, J., Mikail, C., Abou, L., and Portugal, H. 2004. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother. Res. 18:990–995.PubMedCrossRefGoogle Scholar
  23. Gorenflot, R. 1998. Biologie végétale. Plantes supérieures: appareil végétatif. Masson, Paris.Google Scholar
  24. Guenther, E. 1949. The essential oil. Van Nostrand, New York.Google Scholar
  25. Gulz, P. G., Herrmann, T., and Hangst, K. 1996. Leaf trichomes in the genus Cistus. Flora 191:85–104.Google Scholar
  26. Hamilton, J. G., Zangerl, A. R., Delucia, E. H., and Berenbaum, M. R. 2001. The carbon–nutrient balance hypothesis: its rise and fall. Ecol. Lett. 4:86–95.CrossRefGoogle Scholar
  27. Haynes, R. 1982. Effects of liming on phosphate availability in acid soils. Plant Soil 68:289–308.CrossRefGoogle Scholar
  28. Hemming, J. D. C., and Lindroth, R. L. 1999. Effects of light and nutrient availability on aspen: growth, phytochemistry and insect performance. J. Chem. Ecol. 25:1687–1714.CrossRefGoogle Scholar
  29. Heyworth, C. J., Iason, G. R., Temperton, V., Jarvis, P. G., and Duncan, A. J. 1998. The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. Oecologia 115:344–350.CrossRefGoogle Scholar
  30. Jennings, W., and Shibamoto, T. 1980. Quantitative analysis of flavour and fragrance volatiles by glass capillary gas chromatography. Academic, New York.Google Scholar
  31. Jones, C. G., and Firn, R. D. 1991. On the evolution of plant secondary chemical diversity. Philos. Trans. R. Soc. B. Philos. 333:273–280.CrossRefGoogle Scholar
  32. Kainulainen, P., Holopainen, J., Palomaki, V., and Holopainen, T. 1996. Effects of nitrogen fertilization on secondary chemistry and ectomycorrhizal state of Scots pine seedlings and on growth of grey pine aphid. J. Chem. Ecol. 22:617–636.CrossRefGoogle Scholar
  33. Kainulainen, P., Utriainen, J., Holopainen, J. K., Oksanen, J., and Holopainen, T. 2000. Influence of elevated ozone and limited nitrogen availability on conifer seedlings in an open-air fumigation system: effects on growth, nutrient content, mycorrhiza, needle ultrastructure, starch and secondary compounds. Glob. Chang Biol. 6:345–355.CrossRefGoogle Scholar
  34. Keeling, C. I., and Bohlmann, J. 2006. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 170:657–675.PubMedCrossRefGoogle Scholar
  35. King, D. J., Gleadow, R. M., and Woodrow, I. E. 2004. Terpene deployment in Eucalyptus polybractea: relationships with leaf structure, environmental stresses, and growth. Funct. Plant Biol. 31:451–460.CrossRefGoogle Scholar
  36. Lahlou, M., and Berrada, R. 2003. Composition and niticidal activity of essential oils of three chemotypes of Rosmarinus officinalis L. acclimatized in Morocco. Flavour Fragr. J. 18:124–127.CrossRefGoogle Scholar
  37. Llusià, J., and Peñuelas, J. 2000. Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am. J. Bot. 87:133–140.PubMedCrossRefGoogle Scholar
  38. Loreto, F. 2002. Distribution of isoprenoid emitters in the Quercus genus around the world: chemo-taxonomical implications and evolutionary considerations based on the ecological function of the trait. Perspect. Plant Ecol. 5:185–192.CrossRefGoogle Scholar
  39. Lu, C., Tian, H., and Huang, Y. 2007. Ecological effects of increased nitrogen deposition in terrestrial ecosystem. J. Plant Ecol. 31:205–218.Google Scholar
  40. McCullough, D. G., and Kulman, H. M. 1991. Effects of nitrogen-fertilization on young jack pine (Pinus-Banksiana) and on its suitability as a host for jack pine budworm (Choristoneura-Pinus-Pinus) (Lepidoptera, Tortricidae). Can. J. For. Res. 21:1447–1458.CrossRefGoogle Scholar
  41. Muzika, R. M., Pregitzer, K. S., and Hanover, J. W. 1989. Changes in terpene production following nitrogen-fertilization of grand fir (Abies-Grandis (Dougl) Lindl) seedlings. Oecologia 80:485–489.CrossRefGoogle Scholar
  42. Ormeño, E. 2006. Strategies d'émission de composés organiques volatils (COV) par quatre espèces végétales méditerranéenes. Ph.D. dissertation, Aix Marseille I, Marseille.Google Scholar
  43. Ormeño, E., Fernandez, C., and Mévy, J. P. 2007a. Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68:840–852.PubMedCrossRefGoogle Scholar
  44. Ormeño, E., Bousquet-Melou, A., Mévy, J. P., Greff, S., Robles, C., Bonin, G., and Fernandez, C. 2007b. Effect of intraspecific competition and substrate type on terpene emissions of some Mediterranean species. J. Chem. Ecol. 33:277–286.PubMedCrossRefGoogle Scholar
  45. Ormeño, E., Fernandez, C., Bousquet-Melou, A., Greff, S., Morin, E., Robles, C., Vila, B., and Bonin, G. 2007c. Monoterpene and sesquiterpene emissions of three Mediterranean species through calcareous and siliceous soils in natural conditions. Atmos. Environ. 41:629–639.CrossRefGoogle Scholar
  46. Panizzi, L., Flamini, G., Cioni, P. L., and Morelli, I. 1993. Composition and antimicrobial properties of essential oils of 4 Mediterranean Lamiaceae. J. Ethnopharmacol. 39:167–170.PubMedCrossRefGoogle Scholar
  47. Pasqua, G., Monacelli, B., Manfredini, C., Loreto, F., and Perez, G. 2002. The role of isoprenoid accumulation and oxidation in sealing wounded needles of Mediterranean pines. Plant Sci. 163:355–359.CrossRefGoogle Scholar
  48. Passama, L. 1970. Composition minérale de diverses espèces calcicoles et calcifuges de la région méditerranéene française. Oecol. Plant. 5:225–246.Google Scholar
  49. Peñuelas, J., and Llusià, J. 1997. Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis. J. Chem. Ecol. 23:979–993.CrossRefGoogle Scholar
  50. Peñuelas, J., and Llusià, J. 2002. Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol. 155:227–237.CrossRefGoogle Scholar
  51. Petrakis, P. V., Roussis, V., and Ortiz, A. 2000. Monoterpenoid diversity in relation to morphology of Pinus brutia and Pinus halepensis in an east Mediterranean area (Attiki, Greece): implications for pine evolution. Edinburgh. J. Bot. 57:349–375.CrossRefGoogle Scholar
  52. Rizvi, S. J. H., and Rizvi, V. 1992. Allelopathy. Basic and applied aspects. Chapman & Hall, London.Google Scholar
  53. Robles, C., and Garzino, S. 1998. Essential oil composition of Cistus albidus leaves. Phytochemistry 48:1341–1345.CrossRefGoogle Scholar
  54. Robles, C., and Garzino, S. 2000. Infraspecific variability in the essential oil composition of Cistus monspeliensis leaves. Phytochemistry 53:71–75.PubMedCrossRefGoogle Scholar
  55. Sardans, J., Roda, F., and Penuelas, J. 2004. Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp rotundifolia on different soils. Plant Ecol. 174:305–317.Google Scholar
  56. Schindler, T., Kotzias, D., Spartà, C., and Versino, B. 1998. Comparison of monoterpene volatilization and leaf oil composition of conifers. Naturwissenschaften 76:475–476.CrossRefGoogle Scholar
  57. Schweingruber, F. H. 1988. Tree rings. basics and applications of dendrochronology. Reidel, Dordrecht.Google Scholar
  58. Seigler, D. S. 1998. Plant secondary metabolism. Kluwer, Dordrecht.Google Scholar
  59. Trabaud, L. 2001. Relation entre les teneurs en bio-éléments chez divers végétaux méditerranéens. Ann. For. Sci. 58:555–567.CrossRefGoogle Scholar
  60. Vuorinen, L., Nerg, A.-M., Syrjälä, L., Peltonen, P., and Holopainen, J. K. 2007. Epirrita autumnata induced VOC emission of silver birch differ from emission induced by leaf fungal pathogen. Arthropod-Plant Interactions 1:3159–165.CrossRefGoogle Scholar
  61. Wassner, D. E., and Ravetta, D. A. 2005. Temperature effects on leaf properties, resin content, and composition in Grindelia chiloensis (Asteraceae). Ind. Crop Prod. 21:155–163.CrossRefGoogle Scholar
  62. Zavala, J. A., and Ravetta, D. A. 2002. The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Ecol. 161:185–191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Elena Ormeño
    • 1
    Email author
  • Virginie Baldy
    • 1
  • Christine Ballini
    • 1
  • Catherine Fernandez
    • 1
  1. 1.Equipe Diversité Fonctionnelle des Communautés Végétales, Institut Méditerranéen d’Ecologie et Paléoécologie (IMEP, UMR CNRS 6116)Aix-Marseille UniversitéMarseilleFrance

Personalised recommendations