Journal of Chemical Ecology

, Volume 34, Issue 8, pp 1013–1025 | Cite as

Potato, Solanum Tuberosum, Defense Against Colorado Potato Beetle, Leptinotarsa Decemlineata (Say): Microarray Gene Expression Profiling of Potato by Colorado Potato Beetle Regurgitant Treatment of Wounded Leaves

  • Susan D. Lawrence
  • Nicole G. Novak
  • Chelsea J.-T. Ju
  • Janice E. K. Cooke


Colorado potato beetle (CPB) is a leading pest of solanaceous plants. Despite the economic importance of this pest, surprisingly few studies have been carried out to characterize its molecular interaction with the potato plant. In particular, little is known about the effect of CPB elicitors on gene expression associated with the plant’s defense response. In order to discover putative CPB elicitor-responsive genes, the TIGR 11,421 EST Solanaceae microarray was used to identify genes that are differentially expressed in response to the addition of CPB regurgitant to wounded potato leaves. By applying a cutoff corresponding to an adjusted P-value of <0.01 and a fold change of >1.5 or <0.67, we found that 73 of these genes are induced by regurgitant treatment of wounded leaves when compared to wounding alone, whereas 54 genes are repressed by this treatment. This gene set likely includes regurgitant-responsive genes as well as wounding-responsive genes whose expression patterns are further enhanced by the presence of regurgitant. Real-time polymerase chain reaction was used to validate differential expression by regurgitant treatment for five of these genes. In general, genes that encoded proteins involved in secondary metabolism and stress were induced by regurgitant; genes associated with photosynthesis were repressed. One induced gene that encodes aromatic amino acid decarboxylase is responsible for synthesis of the precursor of 2-phenylethanol. This is significant because 2-phenylethanol is recognized by the CPB predator Perillus bioculatis. In addition, three of the 16 type 1 and type 2 proteinase inhibitor clones present on the potato microarray were repressed by application of CPB regurgitant to wounded leaves. Given that proteinase inhibitors are known to interfere with digestion of proteins in the insect midgut, repression of these proteinase inhibitors by CPB may inhibit this component of the plant’s defense arsenal. These data suggest that beyond the wound response, CPB elicitors play a role in mediating the plant/insect interaction.


Colorado potato beetle Herbivore Plant/insect interaction Potato Real-time PCR Regurgitant 


  1. Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretions. Science 276:945–949.CrossRefGoogle Scholar
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.PubMedCrossRefGoogle Scholar
  3. Benjamini, Y., and Hochberg, G. Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. (Britain) 57:289–300.Google Scholar
  4. Büchter, R., Strömberg, A., Schmelzer, E., and Kombrink, E. 1997. Primary structure and expression of acidic (class II) chitinase in potato. Plant Mol. Biol. 35:749–761.PubMedCrossRefGoogle Scholar
  5. Christopher, M. E., Miranda, M., Major, I. T., and Constabel, C. P. 2004. Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta 219:936–947.PubMedCrossRefGoogle Scholar
  6. Delessert, C., Wilson, I. W., Van Der,D., Straeten, Dennis, E. S., and Dolferus, R. 2004. Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Mol. Biol. 55:165–181.PubMedCrossRefGoogle Scholar
  7. Dennis, D. T., and Blakeley, S. D. 2000. Carbohydrate metabolism, pp. 630–675, in B. Buchanan, W. Gruissem, and R. Jones (eds.). Biochemistry and Molecular Biology of Plants American Society of Plant Physiologists, Rockville, MD.Google Scholar
  8. De, Vos, M., Van, Osten, V. R., Van, Poecke, R. M., Van, Pelt, J. A., Pozo, M. J., Mueller, M. J., Buchala, A. J., Métraux, J. P., Van, Loon, L. C., Dicke, M., and Pieterse, C. M. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol. Plant-Microb. Interact. 18:923–937.CrossRefGoogle Scholar
  9. Dobbin, K., and Simon, R. 2002. Comparison of microarray designs for class comparison and class discovery. Bioinformatics 18:1438–1445.PubMedCrossRefGoogle Scholar
  10. Dudoit, S., and Yang, J. Y. H. 2002. Bioconductor R packages for exploratory analysis and normalization of cDNA microarray data, pp. 73–101, in G. Parmigiani, E. S. Garrett, R. A. Irizarry, and S. L. Zeger (eds.). The Analysis of Gene Expression Data: Methods and SoftwareSpringer, New York.Google Scholar
  11. Eichenseer, H., Mathews, M. C., Bi, J. L., Murphy, J. B., and Felton, G. W. 1999. Salivary glucose oxidase: multifunctional roles for Helicoverpa zea. Arch. Insect Biochem. Physiol. 42:99–109.PubMedCrossRefGoogle Scholar
  12. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudroit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y. H., and Zhang, J. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80.PubMedCrossRefGoogle Scholar
  13. Halitschke, R., Schittko, U., Pohnert, G., Boland, W., and Baldwin, I. T. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata III. Fatty acid–amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol. 125:711–717.PubMedCrossRefGoogle Scholar
  14. Halitschke, R., Gase, K., Hui, D., Schmidt, D. D., and Baldwin, I. T. 2003. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid–amino acid conjugates. Plant Physiol. 131:1894–1902.PubMedCrossRefGoogle Scholar
  15. Hermsmeier, D., Schittko, U., and Baldwin, I. T. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol. 125:683–700.PubMedCrossRefGoogle Scholar
  16. Ihaka, R., and Gentleman, R. 1996. R: A language for data analysis and graphics. J. Comp. Graph. Stat. 5:299–314.CrossRefGoogle Scholar
  17. Korth, K. L., and Dixon, R. A. 1997. Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves. Plant Physiol. 115:1299–1305.PubMedGoogle Scholar
  18. Kruzmane, D., Jankevica, L., and Ievinsh, G. 2002. Effect of regurgitant from Leptinotarsa decemlineata on wound responses in Solanum tuberosum and Phaseolus vulgaris. Physiol. Plant. 115:577–584.PubMedCrossRefGoogle Scholar
  19. Lawrence, S. D., Novak, N. G., and Blackburn, M. B. 2007. Inhibition of proteinase inhibitor transcripts by Leptinotarsa decemlineata regurgitant in Solanum lycopersicum. J. Chem. Ecol. 33:1041–1048.PubMedCrossRefGoogle Scholar
  20. Liu, X., Huang, B., Lin, J., Fei, J., Chen, Z., Pang, Y., Sun, X., and Tang, K. 2006. A novel pathogenesis-related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress- and pathogen-inducible. J. Plant Physiol. 163:546–556.PubMedCrossRefGoogle Scholar
  21. Lou, Y., and Baldwin, I. T. 2006. Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol. 140:1126–1136.PubMedCrossRefGoogle Scholar
  22. Major, I. T., and Constabel, P. C. 2006. Molecular analysis of poplar defense against herbivory: comparison of wound- and insect elicitor-induced gene expression. New Phytol. 172:617–635.PubMedCrossRefGoogle Scholar
  23. Mattiacci, L., Dicke, M., and Posthumus, M. A. 1995. Beta-glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc. Nat. Acad. Sci. U.S.A. 92:2036–2040.CrossRefGoogle Scholar
  24. Musser, R. O., Hum-Musser, M. C., Bi, J. L., Murphy, J. B., and Felton, G. W. 2002. Caterpillar saliva beats plant defences. Nature 416:599–600.PubMedCrossRefGoogle Scholar
  25. Nakane, E., Kawakita, K., Doke, N., and Yoshioka, H. 2003. Elicitation of primary and secondary metabolism during defense in the potato. J. Gen. Plant Pathol. 69:378–384.CrossRefGoogle Scholar
  26. Nicot, N., Hausman, J. F., Hoffmann, L., and Evers, D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56:2907–2914.PubMedCrossRefGoogle Scholar
  27. Pohnert, G., Jung, V., Haukioja, E., Lempa, K., and Boland, W. 1999. New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron 55:11275–11280.CrossRefGoogle Scholar
  28. Ralph, S., Oddy, C., Cooper, D., Yueh, H., Jancsik, S., Kolosova, N., Philippe, R. N., Aeschliman, D., White, R., Huber, D., Ritland, C. E., Benoit, F., Rigby, T., Nantel, S., Butterfield, Y. S. N., Kirkpatrick, R., Chun, E., Liu, J., Palmquist, D., Wynhoven, B., Stott, J., Yang, G., Barber, S., Holt, R. A., Siddiqui, A., Jones, S. J. M., Marra, M. A., Ellis, B. E., Douglas, C. J., Ritland, K., and Bohlmann, J. 2006a. Genomics of hybrid poplar (Populus trichocarpa x deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Mol. Ecol. 15:1275–1297.PubMedCrossRefGoogle Scholar
  29. Ralph, G. S., Yueh, H., Friedmann, M., Aeschliman, D., Zeznik, J. A., Nelson, C. C., Butterfield, Y. S. N., Kirkpatrick, R., Liu, J., Jones, S. J. M., Marra, M. A., Douglas, C. J., Ritland, K., and Bohlmann, J. 2006b. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell Environ. 29:1545–1570.PubMedCrossRefGoogle Scholar
  30. Reymond, P., Weber, H., Damond, M., and Farmer, E. E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719.PubMedCrossRefGoogle Scholar
  31. Reymond, P., Bodenhausen, N., Van, Poecke, M. P., Krishnamurthy, V., Dicke, M., and Farmer, E. E. 2004. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147.PubMedCrossRefGoogle Scholar
  32. Roda, A., Halitschke, R., Steppuhn, A., and Baldwin, I. T. 2004. Individual variability in herbivore-specific elicitors from the plant’s perspective. Mol. Ecol. 13:2421–2433.PubMedCrossRefGoogle Scholar
  33. Schittko, U., Hermsmeier, D., and Baldwin, I. T. 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. II Accumulation of plant mRNAs in response to insect-derived cues. Plant Physiol. 125:701–710.PubMedCrossRefGoogle Scholar
  34. Schmelz, E. A., Carroll, M. J., Leclere, S., Phipps, S. M., Meredith, J., Chourey, P. S., Alborn, H. T., and Teal, P. E. A. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proc. Natl. Acad. Sci. U.S.A. 103:8894–8899.PubMedCrossRefGoogle Scholar
  35. Schuler, M. A., and Werck-Reichhart, D. 2003. Functional genomics of P450s. Annu. Rev. Plant Biol. 54:629–667.PubMedCrossRefGoogle Scholar
  36. Schütz, S., Weissbecker, B., Klein, A., and Hummel, H. E. 1997. Host plant selection of the Colorado potato beetle as influenced by damage induced volatiles of the potato plant. Naturwissenschaften 84:212–217.CrossRefGoogle Scholar
  37. Shinya, T., Hanai, K., Gális, I., Suvuki, K., Matsuoka, K., Matsuoka, H., and Saito, M. 2007. Characterization of NtChitIV, a class IV chitinase induced by ß-1,3-,1,6-glucan elicitor from Alternaria alternata 102: antagonistic effect of salicylic acid and methyl jasmonate on the induction of NtChitIV. Biochem. Biophys. Res. Commun. 353:311–317.PubMedCrossRefGoogle Scholar
  38. Smyth, G. K. 2004. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3:1–26.Google Scholar
  39. Smyth, G. K. 2005. Limma: linear models for microarray data, pp. 397–420, in R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and W. Huber (eds.). Bioinformatics and Computational Biology Solutions using R and BioconductorSpringer, New York.CrossRefGoogle Scholar
  40. Smyth, G. K., and Speed, T. 2003. Normalization of cDNA microarray data. Methods 31:265–273.PubMedCrossRefGoogle Scholar
  41. Smyth, G. K., Michaud, J., and Scott, H. S. 2005. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21:2067–2075.PubMedCrossRefGoogle Scholar
  42. Stamp, N. 2003. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 78:23–55.PubMedCrossRefGoogle Scholar
  43. Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., and Klee, H. J. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc. Nat. Acad. Sci. U.S.A. 103:8287–8292.CrossRefGoogle Scholar
  44. Todd, C. D., and Polacco, J. C. 2006. AtAAH encodes a protein with allantoate amidohydrolase activity from Arabidopsis thaliana. Planta 223:1108–1113.PubMedCrossRefGoogle Scholar
  45. Weissbecker, B., Van, Loon, J. J. A., and Dicke, M. 1999. Electroantennogram responses of a predator Perillus bioculatus and its prey Leptinotarsa decemlineata, to plant volatiles. J. Chem. Ecol. 25:2313–2325.CrossRefGoogle Scholar
  46. Yang, J., and Han, K.-H. 2004. Functional characterization of Allantoinase genes from Arabidopsis and a nonureide-type legume black locust. Plant Physiol. 134:1039–1049.PubMedCrossRefGoogle Scholar
  47. Yang, Y. H., and Paquet, A. C. 2005. Preprocessing two-color spotted arrays, pp. 49–69, in R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and W. Huber (eds.). Bioinformatics and Computational Biology Solutions using R and BioconductorSpringer, New York.CrossRefGoogle Scholar
  48. Zimmermann, G., Bäumlein, H., Mock, H. -P., Himmelbach, A., and Schweizer, P. 2006. The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol. 142:181–192.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Susan D. Lawrence
    • 1
  • Nicole G. Novak
    • 1
  • Chelsea J.-T. Ju
    • 2
  • Janice E. K. Cooke
    • 2
  1. 1.Invasive Insect Biocontrol and Behavior LabUSDA—ARSBeltsvilleUSA
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations