Journal of Chemical Ecology

, Volume 34, Issue 6, pp 742–747 | Cite as

An Unexpected Mixture of Substances in the Defensive Secretions of the Tubuliferan Thrips, Callococcithrips fuscipennis (Moulton)

  • Gunther Tschuch
  • Peter Lindemann
  • Gerald Moritz


Adults and larvae of the thrips Callococcithrips fuscipennis (Moulton) (Thysanoptera: Tubulifera: Phlaeothripidae) live in the sticky wax masses of adult females of the felt scale insect Callococcus acaciae (Maskell) (Sternorrhyncha: Coccoidea: Eriococcidae). The scale is sessile and feeds on Kunzea shrubs (Myrtales: Myrtaceae). If stressed, the thrips produce droplets of secretions. The mixture contains pentadecane, tridecane, two monoterpenoids, hexadecyl butanoate, and smaller amounts of 15 other esters of long-chain unbranched alcohols identified as acetates, butanoates, hexanoates, and octanoates. The monoterpenoids are dolichodial, an iridoid, and an unknown substance with a mass spectrum very similar to that of anisomorphal and peruphasmal, diastereomers of dolichodial, but with a different retention time. Iridoids, butanoates, hexanoates, and octanoates have not been previously identified in Thysanoptera.


Callococcus acaciae Dolichodial Hexadecyl butanoate Thysanoptera Phlaeothripidae Eriococcidae Coccoidea Alkanes Iridoids Acetates Butanoates Hexanoates Octanoates 



We gratefully acknowledge Aaron T. Dossey, McKnight Brain Institute of the University of Florida (Gainsville, FL, USA) for the gift of NMR-confirmed samples containing dolichodial, anisomorphal, and peruphasmal; Matthias H. Hoffmann, Botanical Gardens of Martin-Luther-University, Halle for the gift of T. marum; and Willi Rettig, Institute of Pharmacy of the Martin-Luther-University Halle-Wittenberg for the syntheses of the butanoates used as standards. We are also grateful to Penelope J. Gullan, University of California (Davis); William Kirk, Keele University, Staffordshire; Douglass R. Miller, USDA-Agricultural Research Service (Beltsville, MD, USA); Laurence A. Mound, CSIRO Canberra; Alice Wells, Australian Biological Resources Study, Canberra; and three unknown reviewers for discussion, comments, and valuable information.


  1. Banks, H. J., Cameron, D. W., Edmonds, J. S., and Raverty, W. D. 1976. Chemistry of the Coccoidea. III Isolation of a bianthrone glucoside from Callococcus acaciae and of ceroalbolinic acid from Cryptes baccatum (Hemiptera: Insecta). Aust. J. Chem. 29:2225–2230.Google Scholar
  2. Batra, S. W. T., and Hefetz, A. 1979. Chemistry of the cephalic and Dufour’s secretions of Melissodes bees. Ann. Ent. Soc. Am. 72:514–515.Google Scholar
  3. Blum, M. S. 1991. Chemical ecology of the Thysanoptera, pp. 95–112, in B. L. Parker, M. Skinner, and T. Lewis (eds.). Towards Understanding Thysanoptera. USDA Forest Service General Technical Report NE-147.Google Scholar
  4. Blum, M. S., Footit, R., and Fales, H. M. 1992. Defensive chemistry and function of the anal exudate of the thrips Haplothrips leucanthemi. Comp. Biochem. Physiol. C 102:209–211.CrossRefGoogle Scholar
  5. Boeve, J.-L., Braekman, J. C., Daloze, D., Houart, M., and Pasteels, J. M. 1984. Defensive secretions of Nematinae larvae (Symphyta—Tenthredinidae). Experientia 40:546–547.CrossRefGoogle Scholar
  6. Boeve, J.-L., Dettner, K., Francke, W., Meyer, H., and Pasteels, J. M. 1992. The secretion of the ventral glands in Nematus sawfly larvae. Biochem. Syst. Ecol. 20:107–111.CrossRefGoogle Scholar
  7. Cavill, G. W. K., and Hinterberger, H. 1960. The chemistry of ants. IV. Terpenoid constituents of some Dolichoderus and Iridomyrmex species. Aust. J. Chem. 13:514–519.Google Scholar
  8. Cavill, G. W. K., Houghton, E., McDonald, F. J., and Williams, P. J. 1976. Isolation and characterization of dolichodial and related compounds from the Argentine ant, Iridomyrmex humilis. Insect Biochem. 6:483–490.CrossRefGoogle Scholar
  9. Christoph, F. 2001. Chemische Zusammensetzung und antimikrobielle Eigenschaften der Teebaumöle der Gattungen Kunzea, Leptospermum und Melaleuca unter besonderer Berücksichtigung von Handelsölen. Dissertation, Universität Hamburg.Google Scholar
  10. Cook, L. G., and Gullan, P. J. 2004. The gall-inducing habit has evolved multiple times among the eriococcid scale insects (Sternorrhyncha: Coccoidea: Eriococcidae). Biol. J. Linn. Soc. 83:441–452.CrossRefGoogle Scholar
  11. Cornelius, M. L., Grace, J. K., Ford, P. W., and Davidson, B. S. 1995. Toxicity and repellency of semiochemicals extracted from a dolichoderine ant (Hymenoptera: Formicidae) to the formosan subterranean termite (Isoptera: Rhinotermitidae). Environ. Entomol. 24:1263–1268.Google Scholar
  12. Dossey, A. T., Walse, S. S., Rocca, J. R., and Edison, A. S. 2006. Single-insect NMR: A new tool to probe chemical biodiversity. ACS Chemical Biology 1:511–514 and supporting information (DOI  10.1021/cb600318u;
  13. Eisner, T. 1965. Defensive spray of a phasmid insect. Science 148:966–968.PubMedCrossRefGoogle Scholar
  14. Eisner, T., Eisner, M., Aneshansley, D. J., Wu, C.-L., and Meinwald, J. 2000. Chemical defense of the mint plant, Teucrium marum. Chemoecology 10:211–216.CrossRefGoogle Scholar
  15. Francke, W., Lübke, G., Schröder, W., Reckziegel, A., Imperatriz-Fonseca, V., Kleinert, A., Engels, E., Hartfelder, K., Radtke, R., and Engels, W. 2000. Identification of oxygen containing volatiles in cephalic secretions of workers of Brazilian stingless bees. J. Braz. Chem. Soc. 11:562–571.CrossRefGoogle Scholar
  16. Howard, D. F., Blum, M. S., and Fales, H. M. 1983. Defense in thrips: forbidding fruitiness of a lactone. Science 220:335–336.PubMedCrossRefGoogle Scholar
  17. Howard, D. F., Blum, M. S., Jones, T. H., Fales, H. M., and Tomalski, M. D. 1987. Defensive function and chemistry of the anal exudate of the Cuban laurel thrips Gynaikothrips ficorum (Marchal). Phytophaga 1:163–170.Google Scholar
  18. Huth, A., and Dettner, K. 1990. Defense chemicals from abdominal glands of 13 rove beetle species of subtribe Staphylinina (Coleoptera: Staphylinidae, Staphylininae). J. Chem. Ecol. 16:2691–2711.CrossRefGoogle Scholar
  19. Lewis, T. 1973. Thrips, Their Biology, Ecology and Economic Importance. p. 348. Academic, New York.Google Scholar
  20. MacDonald, K. M., Hamilton, J. G. C., Jacobson, R., and Kirk, W. D. J. 2002. Effects of alarm pheromone on landing and take-off by adult western flower thrips. Ent. Exp. Appl. 103:279–282.CrossRefGoogle Scholar
  21. Maskell, W. M. 1893/1892. Art. XXVI.—Further coccid notes: with descriptions of new species from Australia, India, Sandwich Islands, Demerara, and South Pacific. Trans. Proc. N. Z. Inst. 25:201–252.Google Scholar
  22. McLafferty, F. W., and Tureček, F. 1993. Interpretation of Mass Spectra. 4th edn.University Science Books, Sausalito, CA.Google Scholar
  23. Meinwald, J., and Jones, T. H. 1978. Synthesis and stereochemistry of chrysomelidial and plagiolactone. J. Am. Chem. Soc. 100:1883–1886.CrossRefGoogle Scholar
  24. Meinwald, J., Chadha, M. S., Hurst, J. J., and Eisner, T. 1962. Defense mechanisms of arthropods—IX. Anisomorphal, the secretion of a phasmid insect. Tetrahedron Lett. 1962:29–33.CrossRefGoogle Scholar
  25. Meinwald, J., Jones, T. H., Eisner, T., and Hicks, K. 1977. New methylcyclopentanoid terpenes from larval defensive secretion of chrysomelid beetle (Plagiodera versicolora). Proc. Natl. Acad. Sci. U. S. A. 74:2189–2193.PubMedCrossRefGoogle Scholar
  26. Miller, D. R., Gullan, P. J., and Williams, D. J. 1998. Family placement of species previously included in the scale insect genus Sphaerococcus Maskell (Hemiptera: Coccoidea). Proc. Entomol. Soc. Wash. 100:286–305.Google Scholar
  27. Moritz, G. 2006. Thripse: Fransenflügler, Thysanoptera. p. 384. Westarp-Wissenschaften, Hohenwarsleben.Google Scholar
  28. Morrison, H., and Morrison, E. 1927. The Maskell species of scale insects of the subfamily Asterolecaniinae. Proc. U. S. Natl. Mus. 71:Art. 171–67.Google Scholar
  29. Moulton, D. 1968. New Thysanoptera from Australia. Proc. Calif. Acad. Sci. Fourth Series 36:93–124.Google Scholar
  30. Mound, L. A. 1970. Convoluted maxillary stylets and the systematics of some phlaethripinae Thysanoptera from Casuarina trees in Australia. Austr. J. Zool. 18:439–463.CrossRefGoogle Scholar
  31. Mound, L. A., and Houston, K. J. 1987. An annotated check-list of Thysanoptera from Australia. Occas. Pap. Syst. Entomol. 4:1–28.Google Scholar
  32. Mound, L. A., and Wells, A. 2007. A new genus for an Australian thrips (Thysanoptera, Phlaethripinae) presumed predatory on a waxy eriococcid (Hemiptera, Coccoidea). Zootaxa 1645:57–61.Google Scholar
  33. Pagnoni, U. M., Pinetti, A., Trave, R., and Garanti, L. 1976. Monoterpenes of Teucrium marum. Aust. J. Chem. 29:1375–1381.CrossRefGoogle Scholar
  34. Palmer, J. M., and Mound, L. A. 1990. 2.2.5 Thysanoptera, pp. 67–76, in D. Rosen (ed.). Armored Scale Insects—Their Biology, Natural Enemies and Control. Vol. 4BElsevier, Amsterdam.Google Scholar
  35. Pasteels, J. M., Braekman, J. C., Daloze, D., and Ottinger, R. 1982. Chemical defense in chrysomelid larvae and adults. Tetrahedron 38:1891–1897.CrossRefGoogle Scholar
  36. Pfeiffer, D. G. 1997. 3.3.8 Deciduous fruit trees, pp. 293–322, in Y. Ben-Dov, and C. J. Hodgson (eds.). Soft Scale Insects—Their Biology, Natural Enemies and Control. Vol. 7BElsevier, Amsterdam.CrossRefGoogle Scholar
  37. Sugawara, F., Matsuda, K., Kobayashi, A., and Yamashita, K. 1979. Defensive secretion of chrysomelid larvae Linaeidea aenea Linné and Plagiodera versicolora Baly. J. Chem. Ecol. 5:929–934.CrossRefGoogle Scholar
  38. Suzuki, T., Haga, K., Tsutsumi, T., and Matsuyama, S. 2004. Analysis of anal secretions from phlaeothripinae thrips. J. Chem. Ecol. 30:409–423.PubMedCrossRefGoogle Scholar
  39. Teerling, C. R., Pierce, H. D., Borden, J. H., and Gillespie, D. R. 1993. Identification and bioactivity of alarm pheromone in the western flower thrips, Frankliniella occidentalis. J. Chem. Ecol. 19:681–697.CrossRefGoogle Scholar
  40. Tengö, J., and Bergström, G. 1976. Odor correspondence between Melitta females and males of their nest parasite Nomada flavopicta K. (Hymenoptera, Apidae). J. Chem. Ecol. 2:57–65.CrossRefGoogle Scholar
  41. Tengö, J., Hefez, A., Bertsch, A., Schmitt, U., Lübke, B., and Francke, W. 1991. Species specificity and complexity of Dufour’s gland secretion of bumble bees. Comp. Biochem. Physiol. 99B:641–646.Google Scholar
  42. Tschuch, G., Lindemann, P., Niesen, A., Csuk, R., and Moritz, G. 2005. A novel long chained acetate in the defensive secretion of thrips. J. Chem. Ecol. 31:1555–1565.PubMedCrossRefGoogle Scholar
  43. Tschuch, G., Lindemann, P., Rettich, W., Mound ,, L. A., and Moritz, G. 2006. Designer-Lipide auf dem Wachs einer Schildlaus (Coccoidea, Eriococcidae). Mitt. Dtsch. Ges. Allg. Angew. Entomol. 15:143–146.Google Scholar
  44. Zhang, F., Dossey, A. T., Zachariah, C., Edison, A. S., and Brüschweiler, R. 2007. Strategy for automated analysis of dynamic metabolic mixtures by NMR. Application to an insect venom. Anal. Chem. 79:7748–7752.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gunther Tschuch
    • 1
  • Peter Lindemann
    • 2
  • Gerald Moritz
    • 1
  1. 1.Developmental Biology, Institute of BiologyMartin-Luther-University Halle-WittenbergHalleGermany
  2. 2.Pharmaceutical Biology, Institute of PharmacyMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations