Journal of Chemical Ecology

, Volume 34, Issue 7, pp 867–881

The use of Odors at Different Spatial Scales: Comparing Birds with Fish

REVIEW ARTICLE

Abstract

Salmon travel hundreds of kilometers of open ocean and meandering rivers to return to their natal stream to spawn; procellariiform seabirds soar over thousands of kilometers of the ocean’s surface searching for foraging opportunities and accurately return to their nesting islands. These large-scale olfactory-guided behaviors are among the most dramatic examples of animal navigation ever described. At much closer ranges, the sense of smell can be used for behaviors as diverse as tracking prey, nest location, and mate selection. Both fish and birds face similar problems interpreting olfactory information in fluid mediums where odors are dispersed as filamentous patches. Similar to insects, which have served as model organisms for investigating olfactory related behaviors, the few fish and bird species that have been studied tend to use olfactory information in conjunction with other sensory modalities. Similar to insects, fish and birds also employ oscillatory or cross-stream movement as sampling mechanisms. This review compares and contrasts the use of odors by fish and birds over a range of spatial scales that span from thousands of kilometers to less than a meter. In so doing, we identify behavioral similarities and new questions that need to be addressed regarding the olfactory ecology of these diverse groups of organisms.

Keywords

Odor tracking Fish Birds Odor plume Pigeon Procellariiform Vulture Salmon Lamprey Eel 

References

  1. Able, K. P. 1991. Common themes and variations in animal orientation systems. Am. Zool 31:157–167.Google Scholar
  2. Able, K. P. 1995. Orientation and navigation: a perspective on fifty years of research. Condor 97:592–604.Google Scholar
  3. Alerstam, T. 2006. Conflicting evidence about long-distance animal navigation. Science 313:791–794.PubMedGoogle Scholar
  4. Baker, C. F., and Montgomery, J. C. 1999. The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J. Comp. Physiol. A 184:519–527.Google Scholar
  5. Baker, C. F., Montgomery, J. C., and Dennis, T. E. 2002. The sensory basis of olfactory search behavior in banded kokopu (Galaxias fasciatus). J. Comp. Physiol. A 188:553–560.Google Scholar
  6. Bang, B. G. 1960. Anatomical evidence for olfactory function in some species of birds. Nature 188:547–549.PubMedGoogle Scholar
  7. Bang, B. G. 1971. Functional anatomy of the olfactory system in 23 orders of birds. Acta Anat 58:Suppl.1–76.Google Scholar
  8. Bang, B. G., and Cobb, S. 1968. The size of the olfactory bulb in 108 species of birds. Auk 85:55–61.Google Scholar
  9. Bang, B. G., and Wenzel, B. M. 1985. Nasal cavity and olfactory systems, pp. 195–223, in J. S. King, and J. McClelland (eds.). Form and Function in Birds, vol. 3 Academic, New York.Google Scholar
  10. Barbin, G. P. 1998. The role of olfaction in homing and estuarine migratory behavior of yellow-phase American eels. Can. J. Fish. Aquat. Sci 55:564–575.Google Scholar
  11. Barbin, G. P., Parker, S. J., and Mccleave, J. D. 1998. Olfactory cues play a critical role in the estuarine migration of silver-phase American eels. Environ. Biol. Fish 53:283–291.Google Scholar
  12. Belanger, J. H., and Willis, M. A. 1996. Adaptive control of odor-guided locomotion: behavioral flexibility as an antidote to environmental unpredictability. Adapt. Behav 4:217–253.Google Scholar
  13. Belanger, R. M., Corkum, L. D., Li, W., and Zielinski, B. S. 2006. Olfactory sensory input increases gill ventilation in male round gobies (Neogobius melanostomus) during exposure to steroids. Comp. Biochem. Phys. A 144:196–202.Google Scholar
  14. Bingman, V. P., and Benvenuti, S. 1996. Olfaction and the homing ability of pigeons in the southeastern United States. J. Exp. Zool 275:186–192.Google Scholar
  15. Bingman, V. P., Alyan, S., and Benvenuti, S. 1998. The importance of atmospheric odours for the homing performance of pigeons in the Sonoran Desert of the southwestern United States. J. Exp. Biol 201:755–760.PubMedGoogle Scholar
  16. Bjerselius, R., Li, w., Teeter, J. H., Seelye, J. G., Johnsen, P. B., Maniak, P. J., Grant, G. C., Polkinghorne, C. N., and Sorensen, P. W. 2000. Direct behavioral evidence that unique bile acids released by larval sea lamprey (Petromyzon marinus) function as a migratory pheromone. Can. J. Fish. Aquat. Sci 57:557–569.Google Scholar
  17. Bonadonna, F., and Nevitt, G. A. 2004. Partner-specific odor recognition in an Antarctic seabird. Science 306:835–835.PubMedGoogle Scholar
  18. Bonadonna, F., Caro, S., Jouventin, P., and Nevitt, G. A. 2006. Evidence that blue petrel, Halobaena caerulea, fledglings can detect and orient to dimethyl sulphide. J. Exp. Biol 209:2165–2169.PubMedGoogle Scholar
  19. Buckley, N. J. 1997. Experimental tests of the information-center hypothesis with black vultures and turkey vultures. Behav. Ecol. Sociobiol 41:267–269.Google Scholar
  20. Caprio, J. 1988. Peripheral filters and chemoreceptor cells in fishespp. 313–338, in J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga (eds.). Sensory Biology of Aquatic AnimalsSpringer, NewYork.Google Scholar
  21. Cardé, R. T., and Willis, M. A. 2008. Navigational strategies used by insects to find distant wind-borne sources of odor. J. Chem. Ecol. (this issue)Google Scholar
  22. Carton, A. G., and Montgomery, J. C. 2003. Evidence of a rheotactic component in the odour search behaviour of freshwater eels. J. Fish Biol 62:501–516.Google Scholar
  23. Courtenay, S. C., Quinn, T. P., Dupuis, H. M. C., Groot, C., and Larkin, P. A. 1997. Factors affecting the recognition of population-specific odours by juvenile coho salmon. J. Fish Biol 50:1042–1060.Google Scholar
  24. Croxall, J. P., and Prince, P. A. 1994. Dead or alive, night or day-how do albatrosses catch squid? Antarct. Sci 6:155–162.Google Scholar
  25. Cunningham, G. B. 2005. Development of olfactory behaviors in procellariiform seabirds. Dissertation in Physiology Graduate Group, University of California, Davis, pp. 155.Google Scholar
  26. Cunningham, G. B., Van Buskirk, R. W., Bonadonna, F., Weimerskirch, H., and Nevitt, G. A. 2003. A comparison of the olfactory abilities of three species of procellariiform chicks. J. Exp. Biol 206:1615–1620.PubMedGoogle Scholar
  27. Cunningham, G. B., VanBuskirk, R., Hodges, M. J., Weimerskirch, H., and Nevitt, G. A. 2006. Behavioural responses of blue petrel chicks Halobaena caerulea to a food-related and novel odour in a simple wind tunnel. Antarct. Sci 18:345–352.Google Scholar
  28. Davis, M. W., Spencer, M. L., and Ottmar, M. L. 2006. Behavioral responses to food odor in juvenile marine fish: acuity varies with species and fish length. J. Exp. Mar. Biol. Ecol 328:1–9.Google Scholar
  29. Deardorff, J. W. 1972. Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci 29:91–115.Google Scholar
  30. Debose, J. L., and Nevitt, G. A. 2007. Investigating the association between pelagic fish and DMSP in a natural coral reef system. Mar. Freshw. Res 58:720–724.Google Scholar
  31. Debose, J. L., Lema, S. C., and Nevitt, G. A. 2008. Dimethylsulfoniopropionate as a foraging cue for reef fishes. Science 319:1356.PubMedGoogle Scholar
  32. Dittman, A. H., and Quinn, T. P. 1996. Homing of Pacific salmon: mechanisms and ecological basis. J. Exp. Biol 199:83–91.PubMedGoogle Scholar
  33. Dittman, A. H., Quinn, T. P., and Nevitt, G. A. 1996. Timing of imprinting to natural and artificial odors by coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci 53:434–442.Google Scholar
  34. Døving, K. B., and Stabell, O. B. 2003. Trails in open waters: sensory cues in salmon migration, pp. 39–52, in S. P. Collin, and N. J. Marshall (eds.). Sensory Processing in Aquatic EnvironmentsSpringer, New York.Google Scholar
  35. Døving, K. B., Westerberg, H., and Johnsen, P. B. 1985. Role of olfaction in the behavioral and neuronal responses of Atlantic salmon, Salmo salar, to hydrographic stratification. Can. J. Fish. Aquat. Sci 42:1658–1667.CrossRefGoogle Scholar
  36. Dusenbery, D. B. 1992. Sensory Ecology. Freeman, New York.Google Scholar
  37. Elliott, J. K., Elliott, J. M., and Mariscal, R. N. 1995. Host selection, location, and association behaviors of anemonefishes in field settlement experiments. Mar. Biol 122:377–389.Google Scholar
  38. Estrella, R. R. 1994. Group size and flight altitude of turkey vultures in two habitats in Mexico. Wilson Bull 106:749–752.Google Scholar
  39. Finelli, C. M., Pentcheff, N. D., Zimmer-faust, R. K., and Wethey, D. S. 1999. Odor transport in turbulent flows: constraints on animal navigation. Limnol. Oceanogr 44:1056–1071.Google Scholar
  40. Gagliardo, A., Odetti, F., and Ioalè, P. 2001a. Relevance of visual cues for orientation at familiar sites by homing pigeons: an experiment in a circular arena. Proc. Roy. Soc. Lond 268:2065–2070.Google Scholar
  41. Gagliardo, A., Ioalè, P., Odetti, F., and Bingman, P. 2001b. The ontogeny of the homing pigeon navigational map: evidence for a sensitive learning period. Proc. R. Soc. Lond. B 268:197–202.Google Scholar
  42. Grubb, T. C. 1972. Smell and foraging in shearwaters and petrels. Nature 237:404–405.Google Scholar
  43. Hagelin, J. C. 2004. Short communication. Observations on the olfactory ability of the Kokapo Strigops habroptilus, the critically endangered parrot of New Zealand. Ibis 146:161–164.Google Scholar
  44. Hara, T. J. 2006. Feeding behaviour in some teleosts in triggered by single amino acids primarily through olfaction. J. Fish Biol 68:810–825.Google Scholar
  45. Hartman, E. J., and Abrahams, M. V. 2000. Sensory compensation and the detection of predators: the interaction between chemical and visual information. Proc. Royal Soc. London Ser. B—Biol. Sci 267:571–575.Google Scholar
  46. Hasler, A. D., Scholz, A. T., and Horrall, R. M. 1978. Olfactory imprinting and homing in salmon. Am. Sci. 66:374–355.Google Scholar
  47. Houston, D. C. 1986. Scavenging efficiency of turkey vultures in tropical forest. Condor 88:318–323.Google Scholar
  48. Hutchison, L. V., and Wenzel, B. M. 1980. Olfactory guidance in foraging by procellariiforms. Condor 82:314–319.Google Scholar
  49. Johnsen, P. B. 1982. Establishing the physiological and behavioral determinants of chemosensory orientation, pp. 379–386, in J. D. McCleave, G. P. Arnold, J. J. Dodson, and W. H. Neill (eds.). Mechanisms of Migration in FishesPlenum, New York.Google Scholar
  50. Johnsen, P. B., and Teeter, J. 1985. Behavioral responses of bonnethead sharks (Sphyrna tiburo) to controlled olfactory stimulation. Mar. Behav. Physiol 11:283–291.Google Scholar
  51. Keefer, M. L., Caudill, C. C., Peery, C. A., and Bjornn, T. C. 2006. Route selection in a large river during the homing migration of Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci 63:1752–1762.Google Scholar
  52. Kettle, A. J., Andreae, M. O., Amouroux, D., Andreae, T. W., Bates, T. S., Berresheim, H., Bingemer, H., Boniforti, R., Curran, M. A. J., Ditullio, G. R., Helas, G., Jones, G. B., Mctaggart, A. R., Mihalopoulos, N., Nguyen, B. C., Novo, A., Putaud, J. P., Rapsomanikis, S., Roberts, G., Schebeske, G., Sharma, S., Simó, R., Staubes, R., Turner, S., and Uher, G. 1999. A global database of sea surface dimethylsuflide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude and month. Glob. Biogeochem. Cycles 13:399–444.Google Scholar
  53. Kramer, G. 1952. Experiments on bird orientation. Ibis 94:265–285.Google Scholar
  54. Lau, K.-K., Roberts, S., Biro, D., Freeman, R., Meade, J., and Guilford, T. 2006. An edge-detection approach to investigating pigeon navigation. J. Theor. Biol 239:71–78.PubMedGoogle Scholar
  55. Lema, S. C., and Nevitt, G. A. 2004. Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting. J. Exp. Biol. 207:3317–3327.PubMedGoogle Scholar
  56. Løkkeborg, S. 1998. Feeding behaviour of cod, Gadus morhua: activity rhythm and chemically mediated food search. Anim. Behav 56:371–378.PubMedGoogle Scholar
  57. Løkkeborg, S., and Fernö, A. 1999. Diel activity pattern and food search behaviour in cod, Gadus morhua. Environ. Biol. Fish 54:345–353.Google Scholar
  58. Mitamura, H., Arai, N., Sakamoto, W., Mitsunaga, Y., Tanaka, H., Mukai, Y., Nakamura, K., Sasaki, M., and Yoneda, Y. 2005. Role of olfaction and vision in homing behaviour of black rockfish Sebastes inermis. J. Exp. Mar. Biol. Ecol 322:123–134.Google Scholar
  59. Montgomery, J. C., Diebel, C., Halstead, M. B. D., and Downer, J. 1999. Olfactory search tracks in Antarctic fish Trematomus bernacchii. Polar Biol 21:151–154.Google Scholar
  60. Moore, P., and Crimaldi, J. 2004. Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. J. Mar. Syst 49:55–64.Google Scholar
  61. Moore, P. A., Grills, J. L., and Schneider, R. W. S. 2000. Habitat-specific signal structure for olfaction: an example from artificial streams. J. Chem. Ecol 26:565–584.Google Scholar
  62. Murphy, C. A., Stacey, N. E., and Corkum, L. D. 2001. Putative steroidal pheromones in the round goby, Neogobius melanostomus: olfactory and behavioral responses. J. Chem. Ecol 27:443–470.PubMedGoogle Scholar
  63. Nevitt, G. a. 1991. Do fish sniff? A new mechanism of olfactory sampling in pleuronectid flounders. J. Exp. Biol 157:1–18.PubMedGoogle Scholar
  64. Nevitt, G. A. 1999. Olfactory foraging in Antarctic seabirds: a species-specific attraction to krill odors. Mar. Ecol. Prog. Ser 177:235–241.Google Scholar
  65. Nevitt, G. A. 2000. Olfactory foraging by Antarctic procellariiform seabirds: life at high Reynolds numbers. Biol. Bull 198:245–253.PubMedGoogle Scholar
  66. Nevitt, G. A. 2008. Sensory ecology on the high seas: investigating the odor world of the procellariiform seabirds. J. Exp. Biol. (in press). Google Scholar
  67. Nevitt, G. A., and Haberman, K. L. 2003. Behavioral attraction of Leach’s storm-petrels (Oceanodroma leucorhoa) to dimethyl sulfide. J. Exp. Biol 206:1497–1501.PubMedGoogle Scholar
  68. Nevitt, G. A., and Dittman, A. H. 2004. Olfactory imprinting in salmon: new models and approaches, pp. 109–127, in G. Von Der Emde, J. Mogdans, and B. G. Kapoor (eds.). The Senses of Fish: Adaptations for the Reception of Natural StimuliNarosa, New Delhi.Google Scholar
  69. Nevitt, G. A., and Bonadonna, F. 2005a. Seeing the world through the nose of a bird: new developments in the sensory ecology of procellariiform seabirds. Mar. Ecol. Prog. Ser 287:292–295.Google Scholar
  70. Nevitt, G. A., and Bonadonna, F. 2005b. Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biol. Lett 1:303–305.PubMedGoogle Scholar
  71. Nevitt, G. A., Veit, R. R., and Kareiva, P. 1995. Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds. Nature 376:680–682.Google Scholar
  72. Nevitt, G. A., Reid, K., and Trathan, P. 2004. Testing olfactory foraging strategies in an Antarctic seabird assemblage. J. Exp. Biol 207:3537–3544.PubMedGoogle Scholar
  73. Nevitt, G. A., Losekoot, M., and Weimerskirch, H. 2008. Evidence for olfactory search in Wandering albatross Diomedea exulans. Proc. Nat. Acad. Sci. U.S.A 105:576–4581.Google Scholar
  74. Nordeng, H., and Bratland, P. 2006. Homing experiments with parr, smolt and residents of anadromous Arctic char Salvelinus alpinus and brown trout Salmo trutta: transplantation between neighboring river systems. Ecol. Freshw. Fish 15:488–499.Google Scholar
  75. O’dwyer, T. W., Ackerman, A. L., and Nevitt, G. A. 2008. Examining the development of individual recognition in a burrow-nesting procellariiform, the Leach’s storm-petrel. J. Exp. Biol 211:337–340.PubMedGoogle Scholar
  76. Owre, O. T., and Northington, P. O. 1961. Indication of the sense of smell in the turkey vulture from feeding tests. Am. Midland Nat 66:200–205.Google Scholar
  77. Papi, F. 1990. Olfactory navigation in birds. Experientia 46:352–363.Google Scholar
  78. Papi, F. 2006. Navigation of marine, freshwater and coastal animals: concepts and current problems. Mar. Freshw. Behav. Physiol 39:3–12.Google Scholar
  79. Papi, F., Fiore, L., Fiashchi, V., and Benvenuti, S. 1971. The influence of olfactory nerve section on the homing capacity of carrier pigeons. Monit. Zool. Ital 5:265–267.Google Scholar
  80. Plenderleith, M., van Oosterhout, C., Robinson, R. L., and Turner, G. F. 2005. Female preference for conspecific males based on olfactory cues in a Lake Malawi cichlid fish. Biol. Lett 1:411–414.PubMedGoogle Scholar
  81. Roper, T. J. 1999. Olfaction in birds. Adv. Study Behav 28:247–332.Google Scholar
  82. Sand, O., and Karlsen, H. E. 2000. Detection of infrasound by the Atlantic cod. R. Soc 125:197–204.Google Scholar
  83. Sherman, M. L., and Moore, P. A. 2001. Chemical orientation of brown bullheads, Ameiurus nebulosus, under different flow conditions. J. Chem. Ecol 27:2301–2318.PubMedGoogle Scholar
  84. Silverman, E. D., Veit, R. R., and Nevitt, G. A. 2004. Nearest neighbors as foraging cues: information transfer in a patchy environment. Mar. Ecol. Prog. Ser 277:25–35.Google Scholar
  85. Smith, S. A., and Paselk, R. A. 1986. Olfactory sensitivity of the turkey vulture (Cathartes aura) to three carrion-associated odorants. Auk 103:586–592.Google Scholar
  86. Sorensen, P. W., Vrieze, L. A., and Fine, J. M. 2003. A multi-component migratory pheromone in the sea lamprey. Fish Physiol. Biochem 28:253–257.Google Scholar
  87. Stager, K. E. 1964. The role of olfaction in food location by the turkey vulture (Cathartes aura). Los Angeles Cty. Mus. Contrib. Sci 81:3–63.Google Scholar
  88. Ueda, H., Kaeriyama, M., Mukasa, K., Urano, A., Kudo, H., Shoji, T., Tokumitsu, Y., Yamauchi, K., and Kurihara, K. 1998. Lacustrine sockeye salmon return straight to their natal area from open water using both visual and olfactory cues. Chem. Sens 23:207–212.CrossRefGoogle Scholar
  89. VanBuskirk, R., and Nevitt, G. A. 2007. Evolutionary arguments for olfactory behavior in modern birds. ChemoSense 10:2–6.Google Scholar
  90. Vanbuskirk, R., and Nevitt, G. A. 2008. The influence of developmental environment on the evolution of olfactory foraging behavior in procellariiform seabirds. J. Evol. Biol 21:67–76.Google Scholar
  91. Vickers, N. J. 2000. Mechanisms of animal navigation in odor plumes. Biol. Bull 198:203–212.PubMedGoogle Scholar
  92. Vrieze, L. A., and Sorensen, P. W. 2001. Laboratory assessment of the role of a larval pheromone and natural stream odor in spawning stream localization by migratory sea lamprey (Petromyzon marinus). Can. J. Fish Aquat. Sci 58:2374–2385.Google Scholar
  93. Walcott, C. 1996. Pigeon homing: observations, experiments and confusions. J. Exp. Biol 199:21–27.PubMedGoogle Scholar
  94. Wallraff, H. G. 1989. Simulated navigation based on assumed gradients of atmospheric trace gases (models on pigeon homing. Part 3). J. Theor. Biol 138:511–528.Google Scholar
  95. Wallraff, H. G. 2000. Path integration by passively displaced homing pigeons? Anim. Behav 60:F30–F36.Google Scholar
  96. Wallraff, H. G. 2004. Avian olfactory navigation: its empirical foundation and conceptual state. Anim. Behav 67:189–204.Google Scholar
  97. Wallraff, H. G. 2005. Beyond familiar landmarks and integrated routes: goal-oriented navigation by birds. Connect. Sci 17:91–106.Google Scholar
  98. Wallraff, H. G., and Andreae, M. O. 2000. Spatial gradients in ratios of atmospheric trace gases: a study stimulated by experiments on bird navigation. Tellus 52B:1138–1157.Google Scholar
  99. Warham, J. 1990. The Petrels: Their Ecology and Breeding Systems. Academic, London.Google Scholar
  100. Warham, J. 1996. The Behavior, Population Biology and Physiology of the Petrels. Academic, London.Google Scholar
  101. Weimerskirch, H., Guionnet, T., Martin, J., Shaffer, S. A., and Costa, D. P. 2000. Fast and fuel efficient? Optimal use of wind by flying albatrosses. Phil. Trans. R. Soc. Lond. B 267:1869–1874.Google Scholar
  102. Weimerskirch, H., Bonadonna, F., Bailleul, F., Mabille, G., Dell’omo, G., and Lipp, H. P. 2002. GPS tracking of foraging albatrosses. Science 295:1259–1259.PubMedGoogle Scholar
  103. Weimerskirch, H., Pinaud, D., Pawlowski, F., and Bost, C. A. 2007. Does prey capture induce area-restricted search? A fine scale study using GPS in a marine predator, the wandering albatross. Am. Nat 170:734–743.PubMedGoogle Scholar
  104. Wenzel, B. M. 1960. The olfactory prowess of the Kiwi. Nature 220:1133–1134.Google Scholar
  105. Wenzel, B. M. 1987. The olfactory and related systems in birds. Ann. N.Y. Acad. Sci 519:137–139.Google Scholar
  106. Westerberg, H. 1982. The orientation of fish and the vertical stratification at fine- and micro-structure scales, pp. 179–204, in J. D. McCleave, G. P. Arnold, J. J. Dodson, and W. H. Neill (eds.). Mechanisms of Migration in FishesPlenum, New York.Google Scholar
  107. Wilson, R. P., Putz, K., Gremillet, D., Culik, B. M., Kierspel, M., Regel, J., Bost, C. A., Lage, J., and Cooper, J. 1995. Reliability of stomach temperature changes in determining feeding characteristics of seabirds. J. Exp. Biol 198:1115–1135.PubMedGoogle Scholar
  108. Wiltschko, W., and wiltschko, R. 1998. The navigation system of birds and its development, pp. 155–159, in R. P. Balda, I. M. Pepperberg, and A. C. Kamil (eds.). Animal Congnition in Nature. Academic, San Diego.Google Scholar
  109. Wiltschko, R., and wiltschko, W. 2000. A strategy for beginners! Reply to Wallraff (2000). Anim. Behav 60:F37–F43.Google Scholar
  110. Willis, M. A. 2005. Odor-modulated navigation in insects and artificial systems. Chem. Senses 30:i287–i288.PubMedGoogle Scholar
  111. Zimmer-faust, R. K., Finelli, C. M., Pentcheff, N. D., and Wethey, D. S. 1995. Odor plumes and animal navigation in turbulent water flow: a field study. Biol. Bull 188:111–116.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Neurobiology, Physiology and BehaviorUniversity of CaliforniaDavisUSA
  2. 2.Bodega Marine LaboratoryBodega BayUSA
  3. 3.Flower Garden Banks National Marine Sanctuary (NOAA)GalvestonUSA

Personalised recommendations