Journal of Chemical Ecology

, Volume 34, Issue 7, pp 837–853

Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

  • Jeffrey A. Riffell
  • Leif Abrell
  • John G. Hildebrand
Review Article

Abstract

Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems.

Keywords

Odor plume Insect behavior Odor-plume tracking PTRMS Mass spectrometry Gas chromatography Odor landscape 

References

  1. Abrell, L., Gueresnstein, P. G., Mechaber, W. L., Stange, G., Christensen, T. A., Nakanishi, K., and Hildebrand, J. G. 2005. Effect of elevated atmospheric CO2 on oviposition behavior in Manduca sexta moths. Global Change Biology 11:1272–1282.Google Scholar
  2. Atema, J. 1996. Eddy chemotaxis and odor landscapes: Exploration of nature with animal sensors. Biol. Bull. 191:129–138.Google Scholar
  3. Baldocchi, D. D. 1989. Turbulent transfer in a deciduous forest. Tree Physiol. 5:357–377.PubMedGoogle Scholar
  4. Bargmann, C. I. 2006. Comparative chemosensation from receptors to ecology. Nature 444:295–301.PubMedGoogle Scholar
  5. Bau, J., Justus, K. A., and Cardé, R. T. 2002. Antennal resolution of pulsed pheromone plumes in three moth species. J. Insect Physiol. 48:433–442.PubMedGoogle Scholar
  6. Bogner, F. 1990. Sensory physiological investigation of the carbon dioxide receptors in Lepidoptera. J. Insect Physiol. 36:951–957.Google Scholar
  7. Borsdorf, H., and Eiceman, G. A. 2006. Ion mobility spectrometry: Principles and applications. Appl. Spectrosc. Rev. 41:323–375.Google Scholar
  8. Cardé, R. T., and Willis, M. A. 2008. Navigation strategies used by insects to find distant, wind-borne sources of odor. J. Chem. Ecol. (this volume).Google Scholar
  9. Cermak, J. E., and Arya, S. P. S. 1970. Problems of atmospheric shear flows and their laboratory simulation. Boundary-Layer Meteorol. 1:40–60.Google Scholar
  10. Charles, L., Riter, L. S., and Cooks, R. G. 2001. Direct analysis of semivolatile organic compounds in air by atmospheric pressure chemical ionization mass spectrometry. Anal. Chem. 73:5061–5065.PubMedGoogle Scholar
  11. Chen, H., Wortmann, A., Zhang, W., and Zenobi, R. 2007. Rapid in vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Angew. Chem. Int. Ed. 46:580–583.Google Scholar
  12. Christian, T. J., Kleiss, B., Yokelson, R. J., Holzinger, R., Crutzen, P. J., Hao, W. M., Shitai, T., and Blake, D. R. 2004. Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS//FID//ECD. J. Geophys. Res. 109:1–12.Google Scholar
  13. Cias, P., Wang, C., and Dibble, T. S. 2007. Absorption cross-sections of the C-H overtone of volatile organic compounds: 2 methyl-1,3-butadiene (isoprene), 1,3-butadiene, and 2,3-dimethyl-1,3-butadiene. Appl. Spectrosc. 61:230–236.PubMedGoogle Scholar
  14. Cody, R. B., Larame’e, J. A., and Durst H. D. 2005. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77:2297–2302.PubMedGoogle Scholar
  15. Conner, W. E., Eisner, T., Meer, R. K., Guerrero, A., Ghiringelli, D., and Meinwald, J. 1980. Sex attractant of an arctiid moth (Utetheisa ornatrix): A pulsed chemical signal. Behav. Ecol. Sociobiol. 7:55–63.Google Scholar
  16. Cooks, R. G., Ouyang, Z., Takats, Z., and Wiseman, J. M. 2006. Ambient mass spectrometry. Science 311:1566–1570.PubMedGoogle Scholar
  17. D’ALessandro, M., and Turlings, T. C. J. 2006. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32.Google Scholar
  18. De gouw, J., and Warneke, C. 2007. Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom. Rev. 26:223–257.PubMedGoogle Scholar
  19. Debose, J. L., and Nevitt, G. A. 2008. Behavioral responses and navigational strategies to natural olfactory stimuli II: fish and birds. J. Chem. Ecol. (this volume).Google Scholar
  20. Dinar, N., Kaplan, H., and Kleiman, M. 1988. Characterization of concentration fluctuations of a surface plume in a neutral boundary layer. Boundary-Layer Metereol. 45:157–175.Google Scholar
  21. Dorfner, R., Ferge, T., Yeretzian, C., Kettrup, A., and Zimmermann, R. 2004. Laser mass spectrometry as on-line sensor for industrial process analysis: Process control of coffee roasting. Anal. Chem. 76:1386–1402.PubMedGoogle Scholar
  22. Eiceman, G. A., Snyder, A. P., and Blyth, D. A. 1990. Monitoring of airborne organic vapors using ion mobility spectrometry. I. J. Env. Anal. Chem. 38:415–425.Google Scholar
  23. Elkinton, J. S., Cardé, R. T., and Mason, C. J. 1984. Evaluation of time-average dispersion models for estimating pheromone concentration in a deciduous forest. J. Chem. Ecol. 10:1081–1108.Google Scholar
  24. Fackrell, J. E., and Robins, A. G. 1982. The effects of source size on concentration fluctuations in plumes. Boundary-Layer Meteorol. 22:335–350.Google Scholar
  25. Filella, I., Penuelas, J., and Llusia, J. 2006. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytologist 169:135–144.PubMedGoogle Scholar
  26. Finelli, C. M., Pentcheff, N. D., Zimmer-Faust, R. K., and Wethey, D. S. 1999. Odor Transport in Turbulent Flows: Constraints on Animal Navigation. Limnol. Oceanogr. 44:1056–1071.Google Scholar
  27. Finelli, C. M., Pentcheff, N., Zimmer, R. K., and Wethey, D. S. 2000. Physical constraints on ecological processes: A field test of odor-mediated foraging. Ecology 81:784–797.Google Scholar
  28. Freeman, C. G., and Mcewan, M. J. 2002. Rapid analysis of trace gases in complex mixtures using selected ion flow tube-mass spectrometry. Australian J. Chem. 55:491–494.Google Scholar
  29. French, A. S., and Meisner, S. 2007. A new method for wide frequency range dynamic olfactory stimulation and characterization. Chem. Senses 32:681–688.PubMedGoogle Scholar
  30. Guerenstein, P., and Guerin, P. 2001. Olfactory and behavioural responses of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts. J. Exp. Biol. 204:585–597.PubMedGoogle Scholar
  31. Guerenstein, P., Christensen, T. A., and Hildebrand, J. G. 2004. Sensory processing of ambient CO2 information in the brain of the moth Manduca sexta. J. Comp. Physiol. A 190:707–725.Google Scholar
  32. Guerenstein, P., and Hildebrand, J. G. 2008. Roles and effects of environmental carbon dioxide in insect life. Annu. Rev. Entomol. 53:161–178.Google Scholar
  33. Haefliger, O. P., and Jeckelmann, N. 2007. Direct mass spectrometric analysis of flavors and fragrances in real applications using DART. Rapid Commun. Mass Spectrom. 21:1361–1366.PubMedGoogle Scholar
  34. Heinbockel, T., Christensen, T. A., and Hildebrand, J. G. 1999. Temporal tuning of odor responses in pheromone-responsive projection neurons in the brain of the sphinx moth Manduca sexta. J. Comp. Neurol. 409:1–12.PubMedGoogle Scholar
  35. Hildebrand, J. G. 1995. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci. USA 92:67–74.PubMedGoogle Scholar
  36. Hills, A. J., and Zimmerman, P. R. 1990. Isoprene measurement by ozone-induced chemiluminescence. Anal. Chem. 62:1055–1060.Google Scholar
  37. Ho, C. K., Robinson, A., Miller, D. R., and Davis, M. J. 2007. Overview of sensors and needs for environmental monitoring. Sensors 5:4–37.CrossRefGoogle Scholar
  38. Iwana, T., Mitsutaka, H., Isao, Y., Okada, H., and Hiraoka, K. 2006. Development of sniffing atmospheric pressure Penning ionization. J. Mass Spectrom. Soc. Japan 54:227–233.Google Scholar
  39. Jublot, L., Linforth, R. S. T., and Taylor, A. J. 2005. Direct atmospheric pressure chemical ionisation ion trap mass spectrometry for aroma analysis: Speed, sensitivity and resolution of isobaric compounds. I. J. Mass Spectrom. 243:269–277.Google Scholar
  40. Justus, K. A., Murlis, J., Jones, C. D., and Cardé, R. T. 2002. Measurement of odor-plume structure in a wind tunnel using photoionization detector and a tracer gas. Env. Fluid Mech. 2:115–142.Google Scholar
  41. Justus, K. A., Cardé, R. T., and French, A. S. 2005. Dynamic properties of antennal responses to pheromone in two moth species. J. Neurophysiol. 93:2233–2239.PubMedGoogle Scholar
  42. Kachanov, A. A., Crosson, E. R., and Paldus, B. A. 2006. Tunable diode lasers: Expanding the horizon for laser absorption spectroscopy. Optics Photonics News 16:44–50.Google Scholar
  43. Kaimal, J., and Finnigan, J. 1994. Atmospheric Boundary Layer Flows, 1 edn. Oxford University Press, Oxford.Google Scholar
  44. Kaissling, K. E., and Priesner, E. 1970. Die Riechschwelle des Seidenspinners. Naturwissenschaften 57:23–28.Google Scholar
  45. Karl, T., Guenther, A., Jordan, A., Fall, R., and Lindinger, W. 2000. Eddy covariance measurement of biogenic oxygenated VOC emissions from harvesting. Atmos. Env. 35:491–495.Google Scholar
  46. Karl, T., Jobson, T., Kuster, W. C., Williams, E., Stutz, J., Shetter, R., Hall, S. R., Goldan, P., Fehsenfeld, F., and Lindinger, W. 2003. Use of proton-transfer-reaction mass spectrometry to characterize volatile organic compound sources at the La Porte super site during the Texas Air Quality Study 2000. J. Geophys. Res. 108:ACH13–1–ACH13/15.Google Scholar
  47. Khunemann, F., Wolfertz, M., Arnold, S., Lagemann, M., Popp, A., Schuler, U., Jux, A., and Boland, W. 2002. Simultaneous online detection of isoprene and isoprene-d2 using infrared photoacoustic spectroscopy. App. Physics B 75:397–403.Google Scholar
  48. Kleineidam, C., and Roces, F. 2000. Carbon dioxide concentrations and nest ventilation in nests of the leaf-cutting ant Atta vollenweideri. Insectes Sociaux 47:241–248.Google Scholar
  49. Kleineidam, C., Ernst, R., and Roces, F. 2001. Wind-induced ventilation of the giant nests of the leaf-cutting ant Atta vollenweideri. Naturwissenschaften 88:301–305.PubMedGoogle Scholar
  50. Koehl, M. A. R. 2006. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem. Senses 31:93–105.Google Scholar
  51. Kuenen, L., and Carde, R. T. 1994. Strategies for recontacting a lost pheromone plume: Casting and upwind flight in the male gypsy moth. Physiol. Entomol. 19:15–29.Google Scholar
  52. Kunert, M., Biedermann, A., Koch, T., and Boland, W. 2002. Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: Kinetic and quantitative aspects of plant volatile production. J. Sep. Sci. 25:677–684.Google Scholar
  53. Lambertus, G. R., Fix, C. S., Reidy, S. M., Miller, R. A., Wheeler, D., Nazarov, E., and Sacks, R. 2005. Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds. Anal. Chem. 77:7563–7571.Google Scholar
  54. Leclerc, M. Y., Meskhidze, N., and Finn, D. 2003. Comparison between measured tracer fluxes and footprint model predictions over a homogeneous canopy of intermediate roughness. Agric. For. Meteorol. 117:145–158.Google Scholar
  55. Lindinger, W., Hansel, A., and Jordan, A. 1998a. Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem. Soc. Rev. 27:347–354.Google Scholar
  56. Lindinger, W., Hansel, A., and Jordan, A. 1998b. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS). Medical applications, food control, and environmental research. I. J. Mass Spectrom. 173:191–241.Google Scholar
  57. Lu, C. J., and Zellers, E. T. 2002. Multi-adsorbent preconcentration/focusing module for portable-GC/microsensor-array analysis of complex vapor mixtures. Analyst 127:1061–1068.PubMedGoogle Scholar
  58. Mafra-Neto, A., and Carde, R. T. 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.Google Scholar
  59. Matisola, E., and Dömötörová, M. 2003. Fast gas chromatography and its use in trace analysis. J. Chromatogr. A 1000:199–221.Google Scholar
  60. Miller, J. R., and Roelofs, W. L. 1978. Sustained-flight tunnel for measuring insect responses to wind-borne sex pheromones. J. Chem. Ecol. 4:187–198.Google Scholar
  61. Mole, N., and Jones, C. D. 1994. Concentration fluctuation data from dispersion experiments carried out in stable and unstable conditions. Boundary-Layer Meteorol. 67:41–74.Google Scholar
  62. Moore, P. A., and Atema, J. 1991. Spatial information in the three-dimensional fine structure of an aquatic odor plume. Biol. Bull. 181:408–418.Google Scholar
  63. Moore, P., and Crimaldi, J. 2004. Odor landscapes and animal behavior: tracking odor plumes in different physical worlds. J. Mar. Sys. 49:55–64.Google Scholar
  64. Murlis, J. 1997. Odor plumes and the signal they provide, pp. 221–231, in R. T. Carde, and A. K. Minks (eds.). Insect Pheromone Research: New Directions. Chapman and Hall, New York.Google Scholar
  65. Murlis, J., and Jones, C. 1981. Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6:71–86.Google Scholar
  66. Murlis, J., Elkinton, J. S., and Carde, R. T. 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37:505–532.Google Scholar
  67. Murlis, J., Willis, M. A., and Carde, R. T. 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25:211–222.Google Scholar
  68. Mustaparta, H. 1975. Responses of single olfactory cells in the pine weevil Hylobius abietis L. (Col.: Curculionidae). J. Comp. Physiol. A 97:271–290.Google Scholar
  69. Mylne, K. R. 1992. Concentration fluctuation measurements in a plume dispersing in a stable surface layer. Boundary-Layer Meteorol. 60:15–48.Google Scholar
  70. Mylne, K. R., Davidson, M. J., and Thomson, D. J. 1996. Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Boundary-Layer Meteorol. 79:225–242.Google Scholar
  71. Mylne, K., and Mason, P. 1991. Concentration fluctuation measurements in a dispersing plume up to a range of 1000 m. Quart. J. Roy. Meteorol. Soc. 117:177–206.Google Scholar
  72. Ngai, A. K. Y., Persijn, S. T., Harren, F. J. M., Verbraak, H., and Linnartz, H. 2007. Selective trace gas detection of complex molecules with a continuous wave optical parametric oscillator using a planar jet expansion. Appl. Phys. Lett. 90:081109–1–081109-3.Google Scholar
  73. Palassis, J. 1997. Portable photoionization instruments. Appl. Occup. Environ. Hyg. 12:528–531.Google Scholar
  74. Park, K. C., Ochieng, S. A., Zhu, J., and Baker, T. C. 2002. Odor discrimination using insect electroantennogram responses from an insect antennal array. Chem. Senses 27:343–352.PubMedGoogle Scholar
  75. Rauner, J. L. 1976. Deciduous forests, pp. 241–264, in J. L. Monteith (ed.). Vegation and the Atmosphere, Vol. II Case Studies. Academic Press, London.Google Scholar
  76. Reidy, S., George, D., Agah, M., and Sacks, R. 2007. Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors. Anal. Chem. 79:2911–2917.PubMedGoogle Scholar
  77. Röck, F., Barsan, N., and Weimar, U. 2008. Electronic nose: Current status and future trends. Chem. Rev. 108:705–725.PubMedGoogle Scholar
  78. Roelofs, W. L. 1984. Electroantennogram assays: Rapid and convenient screening procedures for pheromones, pp. 131–159, in H. E. Hummel, and T. A. Miller (eds.). Techniques in Pheromone ResearchSpringer, New York.Google Scholar
  79. Sanchez, J. M., and Sacks, R. 2007. Performance characteristics of a new prototype for a portable GC using ambient air as carrier gas for on-site analysis. J. Sep. Sci. 30:1052–1060.PubMedGoogle Scholar
  80. Schlichting, H. 1987. Boundary-Layer Theory, 8th edn. McGraw-Hill, New York.Google Scholar
  81. Schneider, D. 1957. Elektrophysiologishe untersuchungen von chemo-und mechanorezeptoren der antennne des Seidenspinners Bombyx mori L. Z Vergi. Physiol. 40:8–41.Google Scholar
  82. Schneider, D. 1969. Insect olfaction: Deciphering system for chemical messages. Science 163:1031–1037.PubMedGoogle Scholar
  83. Song, M. S., Marriotr, P., Ryant, D., and Wynne, P. 2006. Analytical limbo: How low can you go? LCGC North America 24:1012–1029.Google Scholar
  84. Sprayberry, J. D. H., and Daniel, T. L. 2007. Flower tracking in hawkmoths: behavior and energetics. J. Exp. Biol. 210:37–45.PubMedGoogle Scholar
  85. Stange, G. 1996. Sensory and behavioural responses of terrestrial invertebrates to biogenic carbon dioxide gradients, pp. 223–253, in G. Stanhill (ed.). Advances in Bioclimatology. Springer, Heidelberg.Google Scholar
  86. Stange, G. 1997. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia 110:539–545.Google Scholar
  87. Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Kluwer, Dordrecht.Google Scholar
  88. Stranden, M., Liblikas, I., König, W. A., Almaas, T. J., Borg-Karlson, A.-K., and Mustaparta, H. 2003. (–)-Germacrene D receptor neurones in three species of heliothine moths: structure-activity relationships. J. Comp. Physiol A 189:563–577.Google Scholar
  89. Thistle, H. H., Peterson, H., Allwine, G., Lamb, B., Strand, T., Holsten, E. H., and Shea, P. J. 2004. Surrogate Pheromone plumes in three forest trunk spaces: composite statistics and case studies. For. Sci. 50:610–625.Google Scholar
  90. Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., and Schnitzler, J.-P. 2006a. Practical approaches to plant volatile analysis. Plant J. 45:540–560.PubMedGoogle Scholar
  91. Tholl, D., and Röse, U. S. R. 2006b. Detection and identification of floral scent compounds, pp. 3–25, in N. Dudavera, and E. Pichersky (eds.). Biology of Floral Scent. CRC, Boca Raton, FL.Google Scholar
  92. Todd, L. 2000. Mapping the air in real-time to visualize the flow of gases and vapors: occupational and environmental applications. Appl. Occup. Environ. Hyg. 15:106–113.PubMedGoogle Scholar
  93. Vickers, N. J., and Baker, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci. USA 91:5756–5760.PubMedGoogle Scholar
  94. Vickers, N. J., and Baker, T. C. 1996. Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J. Comp. Physiol. A 178:831–847.Google Scholar
  95. Visser, J. H. 1976. The design of a low-speed wind tunnel as an instrument for the study of olfactory orientation in the Colorado beetle (Leptinotarsa decemlineata). Ent. Exp. Appl. 20:275–288.Google Scholar
  96. Vogt, F. 2006. Trends in remote spectroscopic sensing and imaging - experimental techniques and chemometric concepts. Cur. Anal. Chem. 2:107–127.Google Scholar
  97. Von dahl, C. C., Heavecker, M., Schloegl, R., and Baldwin, I. T. 2006. Caterpillar-elicited methanol emission: A new signal in plant-herbivore interactions? Plant J. 46:948–960.PubMedGoogle Scholar
  98. Wang, C., and Mbi, A. 2007. A new acetone detection device using cavity ringdown spectroscopy at 266 nm: evaluation of the instrument performance using acetone sample solutions. Meas. Sci. Tech. 18:2731–2741.Google Scholar
  99. Webster, D. R., and Weissburg, M. J. 2001. Chemosensory guidance cues in a turbulent chemical odor plume. Limnol. Oceanogr. 46:1034–1047.Google Scholar
  100. Weissburg, M. J. 2000. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198:188–202.PubMedGoogle Scholar
  101. Weissburg, M. J., and Zimmer-Faust, R. K. 1993. Life and death in moving fluids: Hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443.Google Scholar
  102. Whalley, L. K., Lewis, A. C., Mcquaid, J. B., Purvis, R. M., Lee, J. D., Stemmler, K., Zellweger, C., and Ridgeopn, P. 2004. Two high-speed, portable GC systems designed for the measurement of non-methane hydrocarbons and PAN: Results from the Jungfraujoch high altitude observatory. J. Env. Mon. 6:234–241.Google Scholar
  103. Willis, M. A., David, C. T., Murlis, J., and Cardé, R. T. 1994. Effects of pheromone plume structure and visual stimuli on the pheromone-modulated upwind flight of male gypsy moths (Lymantria dispar) in a Forest (Lepidoptera: Lymantriidae). J. Insect Behav. 7:385–409.Google Scholar
  104. Willis, M. A., and Baker, T. C. 1988. Effects of varying sex pheromone component ratios on the zigzagging flight movements of the oriental fruit moth, Grapholita molesta. J. Insect Behav. 1:357–371.Google Scholar
  105. Wolf, H., and Wehner, R. 2000. Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J. Exp. Biol. 203:857–868.PubMedGoogle Scholar
  106. Yee, E., Kosteniuk, P. R., Chandler, G. M., Biltoft, C. A., and Bowers, J. F. 1993. Statistical characteristics of concentration fluctuations in dispersing plumes in the atmospheric surface layer. Boundary-Layer Meteorol. 65:69–109.Google Scholar
  107. Zimmer, R. K., and Butman, C. A. 2000. Chemical signaling processes in the marine environment. Biol. Bull. 198:168–187.PubMedGoogle Scholar
  108. Zimmer, R. K., and Zimmer, C. A. 2008. Dynamic scaling in chemical ecology. J. Chem. Ecol. (this volume).Google Scholar
  109. Zimmer-Faust, R. K., Stanfill, J. M., and Collard, S. B. 1988. A fast, multi-channel fluorometer for investigating aquatic chemoreception and odor trails. Limnol. Oceanogr. 33:1586–1594.CrossRefGoogle Scholar
  110. Zimmer-Faust, R. K., Finelli, C. M., Pentcheff, N. D., and Wethey, D. S. 1995. Odor plumes and animal navigation in turbulent water flow: A field study. Biol. Bull. 188:111–116.Google Scholar
  111. Zimmermann, R. 2005. Laser ionisation mass spectrometry for online analysis of complex gas mixtures and combustion effluents. Anal. Bioanal. Chem. 381:57–60.PubMedGoogle Scholar
  112. Zollner, G. E., Torr, S. J., Ammann, C., and Meixner, F. X. 2004. Dispersion of carbon dioxide plumes in African woodland: implications for host-finding by tsetse flies. Physiol. Entomol. 29:381–394.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jeffrey A. Riffell
    • 1
    • 3
  • Leif Abrell
    • 2
    • 3
  • John G. Hildebrand
    • 1
    • 3
  1. 1.ARL Division of NeurobiologyUniversity of ArizonaTucsonUSA
  2. 2.Department of ChemistryUniversity of ArizonaTucsonUSA
  3. 3.Center for Insect ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations