Journal of Chemical Ecology

, Volume 34, Issue 7, pp 915–927

Central Processing of Natural Odor Mixtures in Insects

Review Article

Abstract

In nature, virtually all olfactory stimuli are mixtures of many single odorants. Behavioral experiments repeatedly have demonstrated that an animal’s olfactory system is capable of discriminating behaviorally relevant from irrelevant odor mixtures. However, the sensory mechanisms that underlie such discriminative capability remain elusive. The limited anatomical and physiological evidence collected from both insect and vertebrate models that pertains to this topic is scattered in the literature dating back to early 1980s. Thus, a synthesis of this information that includes more recent findings is needed in order to provide a basis for probing the fundamental question from a new angle. In this review, we discuss several proposed models for mixture processing, along with experimental data gathered from both the initial stage of olfactory processing (i.e., antennal lobe in insects or olfactory bulb in vertebrates) and higher areas of the brain, with an emphasis on how the lateral circuits in the antennal lobe or olfactory bulb may contribute to mixture processing. Based on empirical data as well as theoretical modeling, we conclude that odor mixtures may be represented both at the single-neuron level and at the population level. The difference between these two types of processing may reside in the degree of plasticity, with the former being hard-wired and the latter being more subjected to network modulation.

Keywords

Odor Mixture processing Configural Elemental Antennal lobe Olfactory bulb Glomerulus Projection neurons Imaging Electrophysiology Pheromone Macroglomerular complex Mushroom body Lateral protocerebrum Lateral inhibition 

References

  1. Abel, R., Rybak, J., and Menzels, R. 2001. Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J. Comp. Neurol. 437:363–383.PubMedGoogle Scholar
  2. Alvarado, M. C., and Rudy, J. W. 1992. Some properties of configural learning—an investigation of the transverse-patterning problem. J. Exp. Psychol. Anim. Behav. Process. 18:145–153.PubMedGoogle Scholar
  3. Anderson, P., Hansson, B. S., Nilsson, U., Han, Q., Sjoholm, M., Skals, N., and Anton, S. 2007. Increased behavioral and neuronal sensitivity to sex pheromone after brief odor experience in a moth. Chem. Senses 32:483–491.PubMedGoogle Scholar
  4. Anton, S., and Hansson, B. S. 1994. Central processing of sex-pheromone, host odor, and oviposition deterrent information by interneurons in the antennal lobe of female Spodoptera littoralis (Lepidoptera, Nocituidae). J. Comp. Neurol. 350:199–214.PubMedGoogle Scholar
  5. Anton, S., and Hansson, B. S. 1995. Sex-pheromone and plant-associated odor processing in antennal lobe interneurons of male Spodoptera littoralis (Lepidoptera, Noctuidae). J. Comp. Physiol. A 176:773–789.Google Scholar
  6. Anton, S., Löfsdet, C., and Hansson, B. S. 1997. Central nervous processing of sex pheromones in two strains of the European corn borer Ostrinia nubilalis (Lepidoptera: Pyralidae). J. Exp. Biol. 200:1073–1087.PubMedGoogle Scholar
  7. Baker, T. C. 1990. Upwind flight and casting flight: Complimentary phasic and tonic systems used for location of sex pheromone sources by male moths, pp. 18–25, in K. B. Døving (ed.). ISOT X Proceedings of Tenth International Symposium on Olfaction and TasteUniversity of Oslo, Oslo, Norway.Google Scholar
  8. Baker, T. C., Hansson, B. S., Löfsdet, C., and Löfqvist, J. 2003. Adaptation of male moth antennal neurons in a pheromone plume is associated with cessation of pheromone-mediated flight. Chem. Senses 14:439–448.Google Scholar
  9. Belluscio, L., and Katz, L. C. 2001. Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs. J. Neurosci. 21:2113–2122.PubMedGoogle Scholar
  10. Broome, B. M., Jayaraman, V., and Laurent, G. 2006. Encoding and decoding of overlapping odor sequences. Neuron 51:467–482.PubMedGoogle Scholar
  11. Carlsson, M. A., Chong, K. Y., Daniels, W., Hansson, B. S., and Pearce, T. C. 2007. Component information is preserved in glomerular responses to binary odor mixtures in the moth Spodoptera littoralis. Chem. Senses 32:433–443.PubMedGoogle Scholar
  12. Carlsson, M. A., Knusel, P., Verschure, P. F. M., and Hansson, B. S. 2005. Spatio-temporal Ca2+dynamics of moth olfactory projection neurons. Eur. J. Neurosci. 22:647–657.PubMedGoogle Scholar
  13. Christensen, T. A., and Hildebrand, J. G. 1997. Coincident stimulation with pheromone components improves temporal pattern resolution in central olfactory neurons. J. Neurophysiol. 77:775–781.PubMedGoogle Scholar
  14. Christensen, T. A., Hildebrand, J. G., Tumlinson, J. H., and Doolittle, R. E. 1989a. Sex pheromone blend of Manduca sexta: responses of central olfactory interneurons to antennal stimulation in male moths. Arch. Insect Biochem. Physiol. 10:281–289.Google Scholar
  15. Christensen, T. A., Mustaparta, H., and Hildebrand, J. G. 1989b. Discrimination of sex-pheromone blends in the olfactory system of the moth. Chem. Senses 14:463–477.Google Scholar
  16. Christensen, T. A., Mustaparta, H., and Hildebrand, J. G. 1991. Chemical communication in heliothine moths. II. Central processing of intra- and interspecific olfactory messages in the male corn earworm moth Helicoverpa zea. J. Comp. Physiol. A 169:259–274.Google Scholar
  17. Christensen, T. A., Mustaparta, H., and Hildebrand, J. G. 1995. Chemical communication in heliothine moths VI. Parallel pathways for information processing in the macroglomerular complex of the male tobacco budworm moth Heliothis virescens. J. Comp. Physiol. A 177:545–557.Google Scholar
  18. Christensen, T. A., Waldrop, B. R., Harrow, I. D., and Hildebrand, J. G. 1993. Local interneurons and information-processing in the olfactory glomeruli of the moth Manduca sexta. J. Comp. Physiol. A 173:385–399.PubMedGoogle Scholar
  19. Davis, R. L. 2004. Olfactory learning. Neuron 44:31–48.PubMedGoogle Scholar
  20. Davison, I. G., and Katz, L. C. 2007. Sparse and selective odor coding by mitral/tufted neurons in the main olfactory bulb. J. Neurosci. 27:2091–2101.PubMedGoogle Scholar
  21. Deisig, N., Giurfa, M., Lachnit, H., and Sandoz, J. C. 2006. Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur. J. Neurosci. 24:1161–1174.PubMedGoogle Scholar
  22. Duchamp-viret, P., Duchamp, A., and Chaput, M. A. 2000. Peripheral odor coding in the rat and frog: quality and intensity specification. J. Neurosci. 20:2383–2390.PubMedGoogle Scholar
  23. Egger, V., Svodoba, K., and Mainen, Z. F. 2003. Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J. Neurosci. 23:7551–7558.PubMedGoogle Scholar
  24. Erickson, R. P., Priolo, C. V., Warwick, Z. S., and Schiffman, S. S. 1990. Synthesis of tastes other than the primaries—implications for neural coding theories and the concept of suppression. Chem. Senses 15:495–504.Google Scholar
  25. Fonta, C., Sun, X. J., and Masson, C. 1993. Morphology and spatial-distribution of bee antennal lobe interneurons responsive to odors. Chem. Senses 18:101–119.Google Scholar
  26. Fried, H. U., Fuss, S. H., and Korsching, S. I. 2002. Selective imaging of presynaptic activity in the mouse olfactory bulb shows concentration and structure dependence of odor responses in identified glomeruli. Proc. Natl. Acad. Sci. U. S. A. 99:3222–3227.PubMedGoogle Scholar
  27. Friedrich, R. W., and Korsching, S. 1998. Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer. J. Neurosci. 18:9977–9988.PubMedGoogle Scholar
  28. Galizia, C. G., and Vetter, R. 2004. Optical methods for analyzing odor-evoked activity in the insect brain, pp. 349–392, in T. A. Christensen (ed.). Advances in Insect Sensory NeuroscienceCRC, Boca Raton.Google Scholar
  29. Galizia, C. G., Nägler, K., Hölldobler, B., and Menzel, R. 1998. Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera). Eur. J. Neurosci. 10:2964–2974.PubMedGoogle Scholar
  30. Galizia, C. G., Sachse, S., Rappert, A., and Menzel, R. 1999. The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat. Neurosci. 2:473–478.PubMedGoogle Scholar
  31. Galizia, C. G., Kuttner, A., Joerges, J., and Menzel, R. 2000. Odour representation in honeybee olfactory glomeruli shows slow temporal dynamics: an optical recording study using a voltage-sensitive dye. J. Insect Physiol. 46:877–886.PubMedGoogle Scholar
  32. Giraudet, P., Berthommier, F., and Chaput, M. 2002. Mitral cell temporal response patterns evoked by odor mixtures in the rat olfactory bulb. J. Neurophysiol. 88:829–838.PubMedGoogle Scholar
  33. Girling, R. D., and Carde, R. T. 2007. Analysis and manipulation of the structure of odor plumes from a piezo-electric release system and measurements of upwind flight of male almond moths, Cadra cautella, to pheromone plumes. J. Chem. Ecol. 33:1927–1945.PubMedGoogle Scholar
  34. Hallem, E. A., and Carlson, J. R. 2006. Coding of odors by a receptor repertoire. Cell 125:143–160.PubMedGoogle Scholar
  35. Hansson, B. S., Anton, S., and Christensen, T. A. 1994. Structure and function of antennal lobe neurons in the male turnip moth, Agrotis segetum (Lepidoptera, Noctuidae). J. Comp. Physiol. A 175:547–562.Google Scholar
  36. Hansson, B. S., Larsson, M. C., and Leal, W. S. 1999. Green leaf volatile-detecting olfactory receptor neurons display very high sensitivity and specificity in a scarab beetle. Physiol. Entomol. 24:121–126.Google Scholar
  37. Hartlieb, E., Anton, S., and Hansson, B. S. 1997. Dose-dependent response characteristics of antennal lobe neurons in the male moth Agrotis segetum (Lepidoptera: Noctuidae). J. Comp. Physiol. A 181:469–476.Google Scholar
  38. Heinbockel, T., Christensen, T. A., and Hildebrand, J. G. 1999. Temporal tuning of odor responses in pheromone-responsive projection neurons in the brain of the sphinx moth Manduca sexta. J. Comp. Neurol. 409:1–12.PubMedGoogle Scholar
  39. Heinbockel, T., Christensen, T. A., and Hildebrand, J. G. 2004. Representation of binary pheromone blends by glomerulus-specific olfactory projection neurons. J. Comp. Physiol. A V190:1023–1037.Google Scholar
  40. Hillier, N. K., and Vickers, N. J. 2007. Physiology and antennal lobe projections of olfactory receptor neurons from sexually isomorphic sensilla on male Heliothis virescens. J. Comp. Physiol. A 193:649–663.Google Scholar
  41. Hillier, N. K., Kleineidam, C., and Vickers, N. J. 2006. Physiology and glomerular projections of olfactory receptor neurons on the antenna of female Heliothis virescens (Lepidoptera: Noctuidae) responsive to behaviorally relevant odors. J. Comp. Physiol. A 192:199–219.Google Scholar
  42. Homberg, U., Montague, R. A., and Hildebrand, J. G. 1988. Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res. 254:255–281.PubMedGoogle Scholar
  43. Hopfield, J. J. 1991. Olfactory computation and object perception. Proc. Natl. Acad. Sci. U. S. A. 88:6462–6466.PubMedGoogle Scholar
  44. Hoskins, S. G., Homberg, U., Kingan, T. G., Christensen, T. A., and Hildebrand, J. G. 1986. Immunocytochemistry of GABA in the antennal lobes of the sphinx moth Manduca sexta. Cell Tissue Res. 244:243–252.PubMedGoogle Scholar
  45. Jahr, C. E., and Nicoll, R. A. 1982. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory-bulb. J. Physiol. Lond. 326:213–234.PubMedGoogle Scholar
  46. Jefferis, G. S. X. E., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., and Luo, L. 2007. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187–1203.PubMedGoogle Scholar
  47. Joerges, J., Küttner, A., Galizia, C. G., and Menzel, R. 1997. Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387:285–288.Google Scholar
  48. Kadohisa, M., and Wilson, D. A. 2006. Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc. Natl. Acad. Sci. U. S. A. 103:15206–15211.PubMedGoogle Scholar
  49. Kang, J. S., and Caprio, J. 1995. Electrophysiological responses of single olfactory-bulb neurons to binary-mixtures of amino-acids in the channel catfish, Ictalurus punctatus. J. Neurophysiol. 74:1435–1443.PubMedGoogle Scholar
  50. Kanzaki, R., Arbas, E. A., and Hildebrand, J. G. 1991. Physiology and morphology of descending neurons in pheromone-processing olfactory pathways in the male moth Manduca sexta. J. Comp. Physiol. A 169:1–14.PubMedGoogle Scholar
  51. Kanzaki, R., Arbas, E. A., Strausfeld, N. J., and Hildebrand, J. G. 1989. Physiology and morphology of projection neurons in the antennal lobe of the male moth Manduca sexta. J. Comp. Physiol. A 165:427–453.PubMedGoogle Scholar
  52. Kanzaki, R., and Shibuya, T. 1992. Long-lasting excitation of protocerebral bilateral neurons in the pheromone-processing pathways of the male moth Bombyx mori. Brain Res. 587:211–215.PubMedGoogle Scholar
  53. Kanzaki, R., Soo, K., Seki, Y., and Wada, S. 2003. Projections to higher olfactory centers from subdivisions of the antennal lobe macroglomerular complex of the male silkmoth. Chem. Senses 28:113–130.PubMedGoogle Scholar
  54. Kay, L. M., Crk, T., and Thorngate, J. 2005. A redefinition of odor mixture quality. Behav. Neurosci. 119:726–733.PubMedGoogle Scholar
  55. Kay, L. M., Lowry, C. A., and Jacobs, H. A. 2003. Receptor contributions to configural and elemental odor mixture perception. Behav. Neurosci. 117:1108–1114.PubMedGoogle Scholar
  56. Kirschner, S., Kleineidam, C. J., Zube, C., Rybak, J., Grunewald, B., and Rossler, W. 2006. Dual olfactory pathway in the honeybee, Apis mellifera. J. Comp. Neurol. 499:933–952.PubMedGoogle Scholar
  57. Komiyama, T., and Luo, L. 2006. Development of wiring specificity in the olfactory system. Curr. Opin. Neurobiol. 16:67–73.PubMedGoogle Scholar
  58. Korsching, S. I. 2001. Odor maps in the brain: spatial aspects of odor representation in sensory surface and olfactory bulb. Cell. Mol. Life Sci. 58:520–530.PubMedGoogle Scholar
  59. Laing, D. G., and Francis, G. W. 1989. The capacity of humans to identify odors in mixtures. Physiol. Behav. 46:809–814.PubMedGoogle Scholar
  60. Lei, H., Anton, S., and Hansson, B. S. 2001. Olfactory protocerebral pathways processing sex pheromone and plant odor information in the male moth Agrotis segetum. J. Comp. Neurol. 432:356–370.PubMedGoogle Scholar
  61. Lei, H., Christensen, T. A., and Hildebrand, J. G. 2002. Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons. Nat. Neurosci. 5:557–565.PubMedGoogle Scholar
  62. Leon, M., and Johnson, B. A. 2003. Olfactory coding in the mammalian olfactory bulb. Brain Res. Rev. 42:23–32.PubMedGoogle Scholar
  63. Lin, D. Y., Shea, S. D., and Katz, L. C. 2006. Representation of natural stimuli in the rodent main olfactory bulb. Neuron 50:937–949.Google Scholar
  64. Lin, H. -H., Lai, J. S. -Y., Chin, A. -L., Chen, Y. -C., and Chaing, A. -S. 2007. A map of olfactory representation in the Drosophila mushroom body. Cell 128:1205–1217.PubMedGoogle Scholar
  65. Linster, C., and Cleland, T. A. 2004. Configurational and elemental odor mixture perception can arise from local inhibition. J. Comput. Neurosci. 16:39–47.PubMedGoogle Scholar
  66. Liu, Y. B., and Haynes, K. F. 1992. Filamentous nature of pheromone plumes protects integrity of signal from background chemical noise in cabbage-looper moth, Trichoplusia ni. J. Chem. Ecol. 18:299–307.Google Scholar
  67. Livermore, A., and Laing, D. G. 1996. Influence of training and experience on the perception of multicomponent odor mixtures. J. Exp. Psychol. Hum. Percept. Perform. 22:267–277.PubMedGoogle Scholar
  68. Ma, M. H., and Shepherd, G. M. 2000. Functional mosaic organization of mouse olfactory receptor neurons. Proc. Natl. Acad. Sci. U. S. A. 97:12869–12874.PubMedGoogle Scholar
  69. Malnic, B., Hirono, J., Sato, T., and Buck, L. 1999. Combinatorial receptor codes for odors. Cell 96:713–723.PubMedGoogle Scholar
  70. Malun, D., Waldow, U., Kraus, D., and Boeckh, J. 1993. Connections between the deutocerebrum and the protocerebrum, and neuroanatomy of several classes of deutocerebral projection neurons in the brain of male Periplaneta americana. J. Comp. Neurol. 329:143–162.PubMedGoogle Scholar
  71. Marin, E. C., Jefferis, G. S. X. E., Komiyama, T., Zhu, H., and Luo, L. 2002. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109:243–255.PubMedGoogle Scholar
  72. Meister, M., and Bonhoeffer, T. 2001. Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21:1351–1360.PubMedGoogle Scholar
  73. Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., Edmondson, J., and Axel, R. 1996. Visualizing an olfactory sensory map. Neuron 87:675–686.Google Scholar
  74. Nikonov, A. A., Finger, T. E., and Caprio, J. 2005. Beyond the olfactory bulb: an odotopic map in the forebrain. Proc. Natl. Acad. Sci. U. S. A. 102:18688–18693.PubMedGoogle Scholar
  75. Nowycky, M. C., Mori, K., and Shepherd, G. M. 1981. GABAergic mechanisms of dendrodendritic synapses in isolated turtle olfactory bulb. J. Neurophysiol. 46:639–648.PubMedGoogle Scholar
  76. Olsen, S. R., and Wilson, R. I. 2008. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:956–960.PubMedGoogle Scholar
  77. Python, F., and Stocker, R. F. 2002. Immunoreactivity against choline acetyltransferase, gamma-aminobutyric acid, histamine, octopamine, and serotonin in the larval chemosensory system of Drosophila melanogaster. J. Comp. Neurol. 453:157–167.PubMedGoogle Scholar
  78. Ressler, K. J., Sullivan, S. L., and Buck, L. B. 1994. Information coding in the olfactory system—evidence for a stereotyped and highly organized epitope map in the olfactory-bulb. Cell 79:1245–1255.PubMedGoogle Scholar
  79. Ro, H., Muller, D., and Mustaparta, H. 2007. Anatomical organization of antennal lobe projection neurons in the moth Heliothis virescens. J. Comp. Neurol. 500:658–675.PubMedGoogle Scholar
  80. Rostelien, T., Borg-karlson, A. K., and Mustaparta, H. 2000. Selective receptor neuron responses to E-b-ocimene, b-myrcene, E,E-a-farnesene and homo-farnese in the moth Heliothis virescens, identified by gas chromatography linked to electrophysiology. J. Comp. Physiol. A 186:833–847.PubMedGoogle Scholar
  81. Rubin, B. D., and Katz, L. C. 1999. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499–511.PubMedGoogle Scholar
  82. Sachse, S., and Galizia, C. G. 2003. The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur. J. Neurosci. 18:2119–2132.PubMedGoogle Scholar
  83. Sachse, S., and Galizia, G. 2002. Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J. Neurophysiol. 87:1106–1117.PubMedGoogle Scholar
  84. Shang, Y., Claridge-chang, A., Sjulson, L., Pypaert, M., and Miesenbock, G. 2007. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128:601–612.PubMedGoogle Scholar
  85. Shields, V. D. C., and Hildebrand, J. G. 2001a. Responses of a population of antennal olfactory receptor cells in the female moth Manduca sexta to plant-associated volatile organic compounds. J. Comp. Physiol. A 186:1135–1151.Google Scholar
  86. Shields, V. D. C., and Hildebrand, J. G. 2001b. Recent advances in insect olfaction, specifically regarding the morphology and sensory physiology of antennal sensilla of the female sphinx moth Manduca sexta. Microsc. Res. Tech. 55:307–329.PubMedGoogle Scholar
  87. Skiri, H. T., Galizia, C. G., and Mustaparta, H. 2004. Representation of primary plant odorants in the antennal lobe of the moth Heliothis virescens using calcium imaging. Chem. Senses 29:253–267.PubMedGoogle Scholar
  88. Stocker, R. F., Lienhard, M. C., Borst, A., and Fischbach, K. F. 1990. Neural architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34.PubMedGoogle Scholar
  89. Sun, X. J., Fonta, C., and Masson, C. 1993. Odor quality processing by bee antennal lobe interneurons. Chem. Senses 18:355–377.Google Scholar
  90. Tabor, R., Yaksi, E., Weislogel, J. M., and Friedrich, R. W. 2004. Processing of odor mixtures in the zebrafish olfactory bulb. J. Neurosci. 24:6611–6620.PubMedGoogle Scholar
  91. Takanashi, T., Ishikawa, Y., Anderson, P., Huang, Y., Löfstedt, C., Tatsuki, S., and Hansson, B. S. 2006. Unusual response characteristics of pheromone-specific olfactory receptor neurons in the Asian corn borer moth, Ostrinia furnacalis. J. Exp. Biol. 209:4946–4956.PubMedGoogle Scholar
  92. Tanaka, N. T., Awasaki, T., Shimada, T., and Ito, K. 2004. Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14:449–457.PubMedGoogle Scholar
  93. Touhara, K. 2002. Odor discrimination by G protein-coupled olfactory receptors. Microsc. Res. Tech. 58:135–141.PubMedGoogle Scholar
  94. Uchida, N., Takahashi, Y. K., Tanifuji, M., and Mori, K. 2000. Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat. Neurosci. 3:1035–1043.PubMedGoogle Scholar
  95. Vickers, N. J., Christensen, T. A., Baker, T. C., and Hildebrand, J. G. 2001. Odour-plume dynamics influence the brain’s olfactory code. Nature 410:466–470.PubMedGoogle Scholar
  96. Vickers, N. J., Poole, K., and Linn, C. E. 2005. Plasticity in central olfactory processing and pheromone blend discrimination following interspecies antennal imaginal disc transplantation. J. Comp. Neurol. 491:141–156.PubMedGoogle Scholar
  97. Vosshall, L. B. 2001. The molecular logic of olfaction in Drosophila. Chem. Senses 26:207–213.PubMedGoogle Scholar
  98. Vosshall, L. B., Wong, A. M., and Axel, R. 2000. An olfactory sensory map in the fly brain. Cell 102:147–159.PubMedGoogle Scholar
  99. Vucinic, D., Cohen, L. B., and Kosmidis, E. K. 2006. Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo. J. Neurophysiol. 95:1881–1887.PubMedGoogle Scholar
  100. Wachowiak, M., and Ache, B. W. 1994. Morphology and physiology of multiglomerular olfactory projection neurons in the spiny lobster. J. Comp. Physiol. A 175:35–48.Google Scholar
  101. Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B., and Axel, R. 2003. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282.PubMedGoogle Scholar
  102. Westbrook, R. F., and Charnock, D. J. 1985. Learning about a complex flavor in the rat—some evidence against a multiple, directional association model. Aust. J. Psychol. 37:41–49.Google Scholar
  103. Wilson, D. A. 2003. Rapid, experience-induced enhancement in odorant discrimination by anterior piriform cortex neurons. J. Neurophysiol. 90:65–72.PubMedGoogle Scholar
  104. Wilson, R. I., Turner, G. C., and Laurent, G. 2004. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370.PubMedGoogle Scholar
  105. Wilson, R. I., and Laurent, G. 2005. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25:9069–9079.PubMedGoogle Scholar
  106. Wiltrout, C., Dogra, S., and Linster, C. 2003. Configurational and nonconfigurational interactions between odorants in binary mixtures. Behav. Neurosci. 117:236–245.PubMedGoogle Scholar
  107. Wong, A. M., Wang, J. W., and Axel, R. 2002. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241.PubMedGoogle Scholar
  108. Wu, W., Anton, S., Löfsdet, C., and Hansson, B. S. 1996. Discrimination among pheromone component blends by interneurons in male antennal lobes of two populations of the turnip moth, Agrotis segetum. Proc. Natl. Acad. Sci. U. S. A. 93:8022–8027.Google Scholar
  109. Yao, C. A., Ignell, R., and Carlson, J. R. 2005. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J. Neurosci. 25:8359–8367.PubMedGoogle Scholar
  110. Yokoi, M., Mori, K., and Nakanishi, S. 1995. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory-bulb. Proc. Natl. Acad. Sci. U. S. A. 92:3371–3375.PubMedGoogle Scholar
  111. Zou, Z. H., Li, F. S., and Buck, L. B. 2005. Odor maps in the olfactory cortex. Proc. Natl. Acad. Sci. U. S. A. 102:7724–7729.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.ARL-NeurobiologyUniversity of ArizonaTucsonUSA
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations