Journal of Chemical Ecology

, Volume 34, Issue 7, pp 822–836 | Cite as

Dynamic Scaling in Chemical Ecology

Review Article


Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984–1986, 1994–1996, 2004–2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.


Chemical cue Chemical signal Chemical ecology Dynamic scaling Odor plume 



The authors thank Drs. John Hildebrand and Jeff Riffell for their invitation to write this review, and Dr. Ken Sebens, Director, Friday Harbor Laboratories for graciously offering facilities, services and hospitality in making the work possible. Dr. Arthur Whiteley and The Helen Whiteley Foundation provided an exceptional academic environment for putting ideas into written words. This contribution was supported by awards from the National Science Foundation (OCE 02-42321), California Sea Grant (R/F-197), and the UCLA Council on Research.


  1. Ache, B. W. 1994. Towards a common strategy for transducing olfactory information. Semin. Cell. Biol. 5:55–63.PubMedGoogle Scholar
  2. Agelopoulos, N. G., Dicke, M., and Posthumus, M. A. 1995. Role of volatile infochemicals emitted by feces of larvae in host-searching behavior of parasitoid Cotesia rubecula (Hymenoptera: Braconidae): A behavioral and chemical study. J. Chem. Ecol. 21:1789–1811.Google Scholar
  3. Agrawal, A. A. 2000. Communication between plants: This time it’s real. Trends Ecol. Evol. 15:446.PubMedGoogle Scholar
  4. Agrawal, A. A., Lau, J. A., and Hambäck, P. A. 2006. Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q. Rev. Biol. 81:349–376.PubMedGoogle Scholar
  5. Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.Google Scholar
  6. Ando, T., Inomata, S., and Yamamoto, M. 2004. Lepidopteran sex pheromones. Topics Curr. Chem. 239:51–96.Google Scholar
  7. Atsatt, P. R., and O’dowd, D. J. 1976. Plant defense guilds: many plants are functionally independent with respect to their herbivores. Science 193:24–29.PubMedGoogle Scholar
  8. Bakus, G. J., Targett, N. M., and Schulte, B. 1986. Chemical ecology of marine organisms: An overview. J. Chem. Ecol. 12:951–987.Google Scholar
  9. Baldwin, I. T., Halitschke, R., Paschoid, A., Von Dahl, C. C., and Preston, C. A. 2006. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311:812–815.PubMedGoogle Scholar
  10. Bau, J., Justus, K. A., Loudon, C., and Cardé, R. T. 2005. Electroantennographic resolution of pulsed pheromone plumes in two species of moths with bipectinate antennae. Chem. Senses 30:771–780.PubMedGoogle Scholar
  11. Bernays, E. A., Chapman, R. F., and Hartmann, T. 2002a. A highly sensitive taste receptor cell for pyrrolizidine alkaloids in the lateral galeal sensillum of a polyphagous caterpillar, Estigmene acrea. J. Comp. Physiol. A. 188:715–723.Google Scholar
  12. Bernays, E. A., Chapman, R. F., and Hartmann, T. 2002b. A taste receptor neuron dedicated to the perception of pyrrolizidine alkaloids in the medial galeal sensillum of two polyphagous arctiid caterpillars. Physiol. Entomol. 27:312–321.Google Scholar
  13. Bernot, R. J., and Turner, A. M. 2001. Predator identity and trait-mediated indirect effects in a littoral food web. Oecologia 129:139–146.Google Scholar
  14. Bertness, M. D., and Callaway, R. 1994. Positive interactions in communities. Ecology 9:191–193.Google Scholar
  15. Blaustein, L., Kiflawi, M., Eitam, A., Mangel, M., and Cohen, J. E. 2004. Oviposition habitat selection in response to risk of predation in temporary pools: Mode of detection and consistency across experimental treatments. Oecologica 138:300–305.Google Scholar
  16. Boettcher, A. A., and Targett, N. M. 1996. Induction of metamorphosis in queen conch, Strombus gigas Linnaeus, larvae by cues associated with red algae from their nursery grounds. J. Exp. Mar. Biol. Ecol. 196:29–52.Google Scholar
  17. Brodin, T., Mikolajewski, D. J., and Johansson, F. 2006. Behavioral and life history effects of predator diet cues during ontogeny in damselfly larvae. Oecologia 148:162–169.PubMedGoogle Scholar
  18. Bruno, J. F., and O’connor, M. L. 2005. Cascading effects of predatory diversity and omnivory in a marine food web. Ecol. Letters 8:1048–1056.Google Scholar
  19. Bruno, J. F., Stachowicz, J. J., and Bertness, M. D. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18:119–125.Google Scholar
  20. Butman, C. A. 1987. Larval settlement of soft-sediment invertebrates: The spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr. Mar. Biol. Annu. Rev. 25:113–165.Google Scholar
  21. Camacho, A. D., Pierce, H. D., and Borden, J. H. 1994. Aggregation pheromones in Dryocetes affaber (Mann) (Coleoptera, Scolytidae): Stereoisomerism and species specificity. J. Chem. Ecol. 20:111–124.Google Scholar
  22. Camacho, F. A., and Thacker, R. W. 2006. Amphipod herbivory on the freshwater cyanobacterium Lyngbya wollei: Chemical stimulants and morphological defenses. Limnol. Oceanogr. 51:1870–1875.Google Scholar
  23. Carpenter, S. R., Kitchell, J. F., and Hodgson, J. R. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634–639.Google Scholar
  24. Carr, W. E. S. 1988. The molecular nature of chemical stimuli in the aquatic environment, pp. 3–27, in J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga (eds.). The Sensory Biology of Aquatic Animals. Springer-Verlag, New York, N.Y.Google Scholar
  25. Connell, J. H. 1970. A predator-prey system in marine intertidal region: I. Balanus glandula and several predatory species of Thais. Ecol. Monogr. 40:49–78.Google Scholar
  26. Crespi, B. J. 2001. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16:178–183.PubMedGoogle Scholar
  27. Crimaldi, J. P., Wiley, M. B., and Koseff, J. R. 2002. The relationship between mean and instantaneous structure in turbulent passive scalar plumes. J. Turbulence Article 014.Google Scholar
  28. Cummins, S. E., Schein, C. H., Xu, Y., Braun, W., and Nagle, G. T. 2005. Molluscan attractins: A family of water-borne protein pheromones with interspecific attractiveness. Peptides 26:121–129.PubMedGoogle Scholar
  29. Dacey, J. W. H., King, G. M., and Wakeham, S. G. 1987. Factors controlling emission of dimethylsulfide from salt marshes. Nature 330:643–645.Google Scholar
  30. Dacey, J. W. H., and Wakeham, S. G. 1986. Oceanic dimethylsulfide: Production during zooplankton grazing on phytoplankton. Science 233:1314–1316.PubMedGoogle Scholar
  31. De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Science 393:570–573.Google Scholar
  32. Denny, M. W. 1988. Biology and the Mechanics of the Wave-Swept Environment. Princeton University Press, Princeton, N. J.Google Scholar
  33. Dicke, M., and Sabelis, M. 1988. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct. Ecol. 2:131–139.Google Scholar
  34. Dreanno, C., Matsumura, K., Dohmae, N., Takio, K., Hirota, H., Kirby, R. R., and Clare, A. S. 2006. An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc. Natl. Acad. Sci., USA 39:14396–14401.Google Scholar
  35. Duffy, J. E., and Stachowicz, J. J. 2006. Why biodiversity is important to oceanography: Potential roles of genetics, species, and trophic diversity in pelagic ecosystem processes. Mar. Ecol. Prog. Ser. 311:179–189.Google Scholar
  36. Dussourd, D. E., Harvis, C. A., Meinwald, J., and Eisner, T. 1989. Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proc. Natl. Acad. Sci. USA 88:9224–9227.Google Scholar
  37. Eisner, T., and Eisner, M. 1991. Unpalatability of the pyrrolizidine alkaloid-containing moth Utetheisa ornatrix and its larva to wolf spiders. Psyche 98:111–118.Google Scholar
  38. Eisner, T., Eisner, M., Rossinin, C., Iyengar, V. K., Roach, B. L., Benedikt, E., and Meinwald, J. 2000. Chemical defense against predation in an insect egg. Proc. Natl. Acad. Sci. USA 97:1634–1639.PubMedGoogle Scholar
  39. Elkinton, J. S., Cardé, R. T., and Mason, C. J. 1984. Evaluations of time-average dispersion models for estimating pheromone concentration in a deciduous forest. J. Chem. Ecol. 10:1081–1108.Google Scholar
  40. Feeny, P. P. 1976. Plant apparency and chemical defense, pp. 1–40, in J. W. Wallace, and R. L. Mansell (eds.). Biochemical Interactions between Plants and Insects. Plenum, New York, N.Y.Google Scholar
  41. Fenchel, T. 2002. Microbial behavior in a heterogeneous world. Science 296:1068–1071.PubMedGoogle Scholar
  42. Filippova, L. V., and Nozdrachev, A. D. 2007. The role of visceral receptors in the mechanisms of neuroimmune interactions in mammalian small intestine. Biol. Bull. 34:277–285.Google Scholar
  43. Finelli, C. M., Pentcheff, N., Zimmer, R. K., and Wethey, D. S. 2000. Physical constraints on ecological processes: A field test of odor-mediated foraging. Ecology 81:784–797.Google Scholar
  44. Finelli, C. M., Pentcheff, N. D., Zimmer-Faust, R. K., and Wethey, D. S. 1999. Odor transport in turbulent flows: Constraints on animal navigation. Limnol. Oceanogr. 44:1056–1071.Google Scholar
  45. Frost, C. J., Appel, H. M., Carlson, J. E., De Moraes, C. M., Mescher, M. C., and Schultz, J. C. 2007. Within-plant signaling via volatiles overcomes vascular constraints on systemic signaling and primes responses against herbivores. Ecol. Lett. 10:490–498.PubMedGoogle Scholar
  46. Gammans, N., Bullock, J. M., Gibbons, H., and Schonrogge, K. 2006. Reaction of mutualistic and granivorous ants to Ulex elaiosome chemicals. J. Chem. Ecol. 32:1935–1947.PubMedGoogle Scholar
  47. Gates, R. D., Bil, K. Y., and Muscatine, L. 1999. The influence of anthozoan “host factor” on the physiology of a symbiotic dinoflagellate. J. Exp. Mar. Biol. Ecol. 232:241–259.Google Scholar
  48. Gates, R. D., Hoegh-Guldberg, O., Mcfall-Ngai, M. J., Bil, K. Y., and Muscatine, L. 1995. Free amino acids exhibit anthozoan “host factor” activity: They induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc. Natl. Acad. Sci., USA 92:7430–7434.PubMedGoogle Scholar
  49. Gibson, G. D., and Chia, F. S. 1994. A metamorphic inducer in the opisthobranch Haminaea callidegenita: Partial purification and biological activity. Biol. Bull. 187:133–142.Google Scholar
  50. Glendenning, J. 2007. How do predators cope with chemically defended foods? Biol. Bull. 213:252–266.Google Scholar
  51. Hämback, P. A., and Beckerman, A. P. 2003. Herbivory and plant resource competition: A review of two interacting interactions. Oikos 101:26–37.Google Scholar
  52. Hamilton, J. G. C., Hall, D. R., and Kirk, W. D. J. 2005. Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. J. Chem. Ecol. 31:1369–1379.PubMedGoogle Scholar
  53. Hardege, J., Bartels-Hardege, H., Muller, C. T., and Beckmann, M. 2004. Peptide pheromones in female Nereis succinea. Peptides 9:1517–1522.Google Scholar
  54. Hay, M. E. 1996. Marine chemical ecology: What’s known and what’s next? J. Exp. Mar. Biol. Ecol. 200:103–134.Google Scholar
  55. Hay, M. E., and Fenical, W. 1988. Marine plant–herbivore interactions: The ecology of chemical defense. Annu. Rev. Ecol. Syst. 19:111–145.Google Scholar
  56. Hay, M. E. 2002. The next wave in aquatic chemical ecology. J. Chem. Ecol. 28:1897–1899.Google Scholar
  57. Hense, B. A., Kuttler, C., Müller, J., Rothballer, M., Hartmann, A., and Kreft, J.-U. 2007. Does efficiency sensing unify diffusion and quorum sensing? Nature Rev. Microbiol. 5:230–239.Google Scholar
  58. Hildebrand, J. G. 1995. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci., USA 92:67–74.PubMedGoogle Scholar
  59. Hildebrand, J. G., and Shepherd, G. M. 1997. Mechanisms of olfactory discrimination: Convergent evidence for common principles across phyla. Annu. Rev. Neurosci. 20:595–631.PubMedGoogle Scholar
  60. Hirsch, A. M., Bauer, W. D., Bird, D. M., Cullimore, J., Tyler, B., and Yoder, J. I. 2003. Molecular signals and receptors: Controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868.Google Scholar
  61. Howe, N. R., and Sheikh, Y. M. 1975. Anthopleurine: A sea anemone alarm pheromone. Science 189:386–388.PubMedGoogle Scholar
  62. Inouye, D. W., and Waller, G. D. 1984. Responses of honeybees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65:618–625.Google Scholar
  63. Izaguirre, M. M., Mazza, C. A., Biondini, M., Baldwin, I. T., and Ballare, C. I. 2006. Remote sensing of future competitors: Impacts on plant chemical defenses. Proc. Natl. Acad. Sci., USA 103:7170–7174.PubMedGoogle Scholar
  64. Jackson, J. L., Webster, D. R., Rahman, S., and Weissburg, M. J. 2007. Bed-roughness effects on boundary-layer turbulence and consequences for odor-tracking behavior of blue crabs (Callinectes sapidus). Limnol. Oceanogr. 52:1883–1897.Google Scholar
  65. Johnson, B. R., and Atema, J. 1986. Chemical stimulants for a component of feeding behavior in the common gulf weed shrimp, Leander tenuicornis (Say). Biol. Bull. 170:1–10.Google Scholar
  66. Jones, B. E. 2005. From waking to sleeping: Neuronal and chemical substrates. Trends Pharm. Sci. 26:578–586.PubMedGoogle Scholar
  67. Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E., & Walker, G. C. 2007. How rhizobial symbiants invade plants: the Sinororhizobium-Medicago model. Nature Rev. Microbiol 5:619–633.Google Scholar
  68. Jutel, M., Blaser, K., and Akdis, C. A. 2006. Histamine receptors in immune regulation and allergen-specific immunotherapy. Immunol. 26:245–257.Google Scholar
  69. Karp-Boss, L., Boss, E., and Jumars, P. A. 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. Annu. Rev. 34:71–107.Google Scholar
  70. Kaupp, U. B., Hildebrand, E., and Weyand, I. 2006. Sperm chemotaxis in marine invertebrates – molecules and mechanisms. J. Cell Physiol. 208:487–496.PubMedGoogle Scholar
  71. Keller, L., and Surette, M. G. 2006. Communication in bacteria: An ecological and evolutionary perspective. Nature Rev. Microbiol. 4:249–258.Google Scholar
  72. Kicklighter, C. E., Germann, M., Kamio, M., and Derby, C. D. 2007. Molecular identification of alarm cues in the defensive secretions of the sea hare Aplysia californica. Anim. Behav. 74:1481–1492.CrossRefGoogle Scholar
  73. Krug, P. J., and Manzi, A. E. 1999. Waterborne and surface-associated carbohydrates as settlement cues for larvae of the specialist marine herbivore, Alderia modesta. Biol. Bull. 197:94–103.Google Scholar
  74. Kunert, G., Otto, S., Rose, U. S. R., Gershenzon, J., and Weisser, W. W. 2005. Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol. Lett. 8:596–603.Google Scholar
  75. Kvitek, R. G. 1991. Paralytic shellfish toxins sequestered by bivalves as a defense against siphon-nipping fish. Mar. Biol. 111:369–374.Google Scholar
  76. Kvitek, R., and Bretz, C. 2004. Harmful algal bloom toxins protect bivalve populations from sea otter predation. Mar. Ecol. Prog. Ser. 271:233–243.Google Scholar
  77. Kvitek, R., and Bretz, C. 2005. Shorebird foraging behavior, diet, and abundance vary with harmful algal bloom toxin concentration in invertebrate prey. Mar. Ecol. Prog. Ser. 293:303–309.Google Scholar
  78. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., Tilman, D., and Wardie, D. A. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804–808.PubMedGoogle Scholar
  79. Loughrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1995. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popillia japonica Newman). J. Chem. Ecol. 21:1457–1467.Google Scholar
  80. Mafra-Neto, A., and Cardé, R. T. 1994a. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.Google Scholar
  81. Mafra-Neto, A., and Cardé, R. T. 1994b. Rate of realized interception of pheromone pulses in different wind speeds modulates almond moth orientation. J. Comp. Physiol. A. 182:563–572.Google Scholar
  82. Marden, J. H. 1984. Remote perception of floral nectar by bumblebees. Oecologia 64:232–240.Google Scholar
  83. Matrai, P., and Keller, M. D. 1994. Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton: Intracellular variations. Mar. Biol. 119:61–68.Google Scholar
  84. Matsumura, K. 1995. Tetrodotoxin as a pheromone. Nature 378:563–564.PubMedGoogle Scholar
  85. Mayer, M. S., and Mclaughlin, J. R., eds. 1991. Handbook of Insect Pheromones and Sex Attractants. CRC Press, Boca Raton, FL. 992 p.Google Scholar
  86. Mcclintock, J. B., and Baker, B. J., eds. 2001. Marine Chemical Ecology. CRC Press, Boca Raton, FL. 624 p.Google Scholar
  87. Mead, K. S. 2002. From odor molecules to plume tracking: An interdisciplinary, multilevel approach to olfaction in stomatopods. Integ. Comp. Biol. 42:258–264.Google Scholar
  88. Miller, D. C., Jumars, P. A., and Nowell, A. R. M. 1984. Effects of sediment transport on deposit feeding: Scaling arguments. Limnol. Oceanogr. 29:1202–1217.Google Scholar
  89. Miller, R. L. 1985. Sperm chemo-orientation in the metazoa, pp. 275–337, in C. B. Metz, and A. Monroy (eds.). The Biology of Fertilization, Vol. 2. Academic Press, New York, N.Y.Google Scholar
  90. Moore, P. A., and Crimaldi, J. P. 2004. Odor landscapes and animal behavior: Tracking odor plumes in different physical worlds. J. Mar. Systems 49:55–64.Google Scholar
  91. Muller, C. H., Muller, W. H., and Haines, B. L. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473.PubMedGoogle Scholar
  92. Murdoch, W. W. 1969. Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39:335–354.Google Scholar
  93. Murlis, J., Elkinton, J. S., and Cardé, R. T. 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37:505–532.Google Scholar
  94. Murlis, J., and Jones, C. 1981. Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6:71–86.Google Scholar
  95. Murlis, J., Willis, M. A., and Cardé, R. T. 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25:211–222.Google Scholar
  96. Myers, R. A., and Worm, B. 2003. Rapid depletion of predatory fish communities. Nature 423:280–283.PubMedGoogle Scholar
  97. Mylne, K. R., Davidson, M. J., and Thomson, D. J. 1996. Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Boundary-Layer Meteorol. 79:225–242.Google Scholar
  98. Nevitt, G. A. 2000. Olfactory foraging by Antarctic Procelliform seabirds: Life at high Reynolds numbers. Biol. Bull. 198:245–253.PubMedGoogle Scholar
  99. Nevitt, G. A., Veit, R. R., and Karieva, P. M. 1995. Dimethyl sulfide as a foraging cue for Antarctic Procelliform seabirds. Nature 376:680–682.Google Scholar
  100. Nowell, A. R. M., and Jumars, P. A. 1984. Flow environments of aquatic benthos. Annu. Rev. Ecol. Syst. 15:303–328.Google Scholar
  101. Nowell, A. R. M., and Jumars, P. A. 1987. Flumes: Theoretical and experimental considerations for simulation of benthic environments. Oceanogr. Mar. Biol. Annu. Rev. 25:91–112.Google Scholar
  102. Nylund, G. M., Gribben, P. E., De nys, R., Steinberg, P. D., and Pavia, H. 2007. Surface chemistry versus whole-cell extracts: Antifouling tests with seaweed metabolites. Mar. Ecol. Prog. Ser. 329:73–84.Google Scholar
  103. Paine, R. T. 1966. Food web complexity and species diversity. Am. Nat. 100:65–75.Google Scholar
  104. Painter, S. D., Clough, B., Garden, R. W., Sweedler, J. V., and Nagle, G. T. 1998. Characterization of Aplysia attractin, the first waterborne peptide pheromone in invertebrates. Biol. Bull. 194:120–131.PubMedGoogle Scholar
  105. Pawlik, J. R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. Annu. Rev. 30:273–335.Google Scholar
  106. Pawlik, J. R., and Butman, C. A. 1993. Settlement of a marine tube worm as a function of current velocity: Interacting effects of hydrodynamics and behavior. Limnol. Oceanogr. 38:1730–1740.Google Scholar
  107. Peacor, S. D., and Werner, E. E. 2001. The contribution of trait-mediated indirect effects to the net effects of a predator. Proc. Natl. Acad. Sci., USA 98:3904–3908.PubMedGoogle Scholar
  108. Perret, X., Staehelin, C., and Broughton, W. J. 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64:180–201.PubMedGoogle Scholar
  109. Peterson, J. E., and Hastings, A. 2001. Dimensional approaches to scaling experimental ecosystems: Designing mousetraps to catch elephants. Am. Nat. 157:324–333.Google Scholar
  110. Philips, D. A., Ferris, H., Cook, D. R., and Strong, D. R. 2003. Molecular control points in rhizosphere food webs. Ecology 84:816–826.Google Scholar
  111. Pohnert, G., Steinke, M., and Tollrian, R. 2007. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22:198–204.PubMedGoogle Scholar
  112. Preisser, E. L., Bolnick, D. I., and Bernard, M. F. 2005. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 56:501–509.Google Scholar
  113. Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365–370.PubMedGoogle Scholar
  114. Riffell, J. A., Krug, P. J., and Zimmer, R. K. 2002. Fertilization in the sea: The chemical identify of an abalone sperm attractant. J. Exp. Biol. 205:1439–1450.PubMedGoogle Scholar
  115. Riffell, J. A., and Zimmer, R. K. 2007. Sex and flow: The consequences of fluid shear for sperm-egg interactions. J. Exp. Biol. 210:3644–3660.PubMedGoogle Scholar
  116. Roelofs, W. L. 1995. Chemistry of sex attraction. Proc. Natl. Acad. Sci., USA 92:44–49.PubMedGoogle Scholar
  117. Roelofs, W. L., Liu, W. T., Hao, G. X., Jiao, H. M., Rooney, A. P., and Linn, C. E. 2002. Evolution of moth sex pheromones via ancestral genes. Proc. Natl. Acad. Sci., USA 99:13621–13626.PubMedGoogle Scholar
  118. Roelofs, W. L., and Rooney, A. P. 2003. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc. Natl. Acad. Sci., USA 100:9179–9184.PubMedGoogle Scholar
  119. Sakata, K., Tsuge, M., and Ina, K. 1986. Chemical studies on phagostimulants for marine gastropods: A simple bioassay for feeding stimulants for the young sea hare, Aplysia juliana. Mar. Biol. 91:509–511.Google Scholar
  120. Shulz, S., Francke, W., Boppré, M., Eisner, T., and Meinwald, J. 1993. Defense mechanisms of arthropods: Stereochemical pathway of hydroxydanaidal production from alkaloid precursors in Creatonotos transiens (Lepidoptera, Arctiidae). Proc. Natl. Acad. Sci., USA 90:6834–6838.Google Scholar
  121. Smee, D. L., Ferner, M. C., and Weissburg, M. J. 2008. Alteration of sensory abilities regulates the spatial scale of nonlethal predator effects. Oecologia: in press.Google Scholar
  122. Smee, D. L., and Weissburg, M. J. 2006. Clamming up: Environmental forces diminish the perceptive ability of bivalve prey. Ecology 87:1587–1598.PubMedGoogle Scholar
  123. Stachowicz, J. J. 2001. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246.Google Scholar
  124. Steinke, M., Stefels, J., and Stamhuis, E. 2006. Dimethyl sulfide triggers search behavior in copepods. Limnol. Oceanogr. 51:1925–1930.Google Scholar
  125. Strack, D., Fester, T., Hause, B., Schliemann, W., and Walter, M. H. 2003. Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J. Chem. Ecol. 29:1955–1979.PubMedGoogle Scholar
  126. Stuart, A. E., Borycz, J., and Meinertzhagen, I. A. 2007. The dynamics of signaling at the histamergic photoreceptor synapse of arthropods. Prog. Neurobiol. 82:202–227.PubMedGoogle Scholar
  127. Sugata, Y., Okano, M., Fujiwara, T., Matsumoto, R., Hattori, H., Yamamoto, M., Nishibori, M., and Nishizaki, K. 2007. Histamine H4 receptor agonists have more activities than H4 agonism in antigen-specific human T-cell responses. Immunol. 121:266–275.Google Scholar
  128. Swanson, R. L., De nys, R., Huggett, M. J., Green, J. K., and Steinberg, P. D. 2006. In situ quantification of a natural settlement cue and recruitment of the Australian sea urchin Holopneustes purpurascens. Mar. Ecol. Prog. Ser. 314:1–14.Google Scholar
  129. Swanson, R. L., Williamson, J. E., De nys, R., Kumar, N., Bucknell, M. P., and Steinberg, P. D. 2004. Induction of settlement of larvae of the sea urchin Holopneustes purpurascens by histamine from a host alga. Biol. Bull. 206:161–172.PubMedGoogle Scholar
  130. Tilman, D. 1999. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80:1455–1467.Google Scholar
  131. Toonen, R. J., and Pawlik, J. R. 1996. Settlement of the tube worm Hydroides dianthus (Polychaeta: Serpulidae): Cues for gregarious settlement. Mar. Biol. 126:725–733.Google Scholar
  132. Torto, B., Boucias, D. G., Arbogast, R. T., Tumlin, J. H., and Teal, P. E. 2007. Multitrophic interaction facilitates parasite–host relationship between an invasive beetle and the honey bee. Proc. Natl. Acad. Sci., USA 104:8374–8378.PubMedGoogle Scholar
  133. Trigo, J. R., Brown, K. S. Jr., Witte, L., Hartmann, T., Ludger, L., and Barata, L. E. S. 1996. Pyrrolizidine alkaloids: Different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Bull. J. Linn. Soc. 58:99–123.Google Scholar
  134. Trott, T. J., and Robertson, J. R. 1984. Chemical stimulants of cheliped flexion behavior by the western Atlantic ghost crab, Ocypode quadrata (Fabricius). J. Exp. Mar. Biol. Ecol. 78:237–252.Google Scholar
  135. Trussell, G. C., Ewanchuk, P. J., and Bertness, M. D. 2002. Field evidence of trait-mediated indirect interactions in a rocky intertidal food web. Ecol. Lett. 5:241–245.Google Scholar
  136. Trussell, G. C., Ewanchuk, P. J., and Matassa, C. M. 2006. Habitat effects on the relative importance of trait- and density-mediated indirect interactions. Ecol. Lett. 9:1245–1252.PubMedGoogle Scholar
  137. Velez, Z., Hubbard, P. C., Hardege, J., Barata, E. N., and Canaro, A. V. M. 2007. The contribution of amino acids to the odour of a prey species in the Senegalese sole (Solea senegalensis). Aquaculture 265:336–342.Google Scholar
  138. Vickers, N. J., and Baker, T. C. 1992. Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera, Noctuidae). J. Insect Behav. 5:669–687.Google Scholar
  139. Vickers, N. J., and Baker, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci., USA 91:5756–5760.PubMedGoogle Scholar
  140. Vickers, N. J., Christensen, T. A., Baker, T. C., and Hildebrand, J. G. 2001. Odour-plume dynamics influence the brain’s olfactory code. Nature 410:466–470.PubMedGoogle Scholar
  141. Visser, A. W., and Jackson, G. A. 2004. Characteristics of the chemical plume behind a sinking particle in a turbulent water column. Mar. Ecol. Prog. Ser. 283:55–71.Google Scholar
  142. Von Frisch, K. 1941. Über einen Schreckstoff der Fischhaut and seine biologische Bedeutung. Z. vergl. Physiol. 29:46–145.Google Scholar
  143. Ward, G. E., Brokaw, C. J., Garbers, D. L., and Vacquier, V. D. 1985. Chemotaxis of Arbacia punctulata spermatozoa to resact, peptide from the egg jelly layer. J. Cell Biol. 101:2324–2329.PubMedGoogle Scholar
  144. Webster, D. R., Rahman, S., and Dasi, L. P. 2003. Laser-induced fluorescence measurements of a turbulent plume. J. Engineer. Mechan.-ASCE 129:1130–1137.Google Scholar
  145. Weissburg, M. J. 2000. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198:188–202.PubMedGoogle Scholar
  146. Weissburg, M. J., and Zimmer-Faust, R. K. 1993. Life and death in moving fluids: Hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443.Google Scholar
  147. Weissburg, M. J., and Zimmer-Faust, R. K. 1994. Odour plumes and how blue crabs use them in finding prey. J. Exp.Biol. 197:349–375.PubMedGoogle Scholar
  148. Weller, S. J., Jacobson, N. L., and Conner, W. E. 1999. The evolution of chemical defenses and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol. J. Linn. Soc. 68:557–578.Google Scholar
  149. Werner, E. E., and Peacor, S. D. 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100.Google Scholar
  150. Winder, M., Spaak, P., and Mooij, W. M. 2004. Trade-offs in Daphnia habitat selection. Ecology 85:2027–2036.Google Scholar
  151. Wolfe, G. V. 2000. The chemical defense ecology of marine unicellular plankton: Constraints, mechanisms, and impacts. Biol. Bull. 198:225–244.PubMedGoogle Scholar
  152. Wolfe, G. V., Steinke, M., and Kirst, G. O. 1997. Grazing-activated chemical defense in a unicellular alga. Nature 387:894–897.Google Scholar
  153. Yoshida, M., Murata, M., Inaba, K., and Morisawa, M. 2002. A chemoattractant for ascidian spermatozoa is a sulfonated steroid. Proc. Natl. Acad. Sci., USA 99:14831–14836.PubMedGoogle Scholar
  154. Zimmer, R. K., and Butman, C. A. 2000. Chemical signaling processes in the marine environment. Biol. Bull. 198:168–187.PubMedGoogle Scholar
  155. Zimmer, R. K., Commins, J. E., and Browne, K. A. 1999. Regulatory effects of environmental chemical signals on search behavior and foraging success. Ecology 80:1432–1446.Google Scholar
  156. Zimmer, R. K., and Ferrer, R. P. 2007. Neuroecology, chemical defense, and the keystone species concept. Biol. Bull. 213:208–225.PubMedGoogle Scholar
  157. Zimmer-Faust, R. K., De Souza, M. P., and Yoch, D. C. 1996. Bacterial chemotaxis and its potential role in marine dimethylsulfide production and biogeochemical sulfur cycling. Limnol. Oceanogr. 41:1330–1334.Google Scholar
  158. Zimmer-Faust, R. K., Finelli, C. M., Pentcheff, N. D., and Wethey, D. S. 1995. Odor plumes and animal navigation in turbulent water flow: A field study. Biol. Bull. 188:111–116.Google Scholar
  159. Zimmer-Faust, R. K., Stanfill, J. M., and Collard, S. B. III. 1988. A fast, multi-channel fluorometer for investigating aquatic chemoreception and odor trails. Limnol. Oceanogr. 33:1586–1594.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesUSA
  2. 2.Neurosciences Program and Brain Research InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations