Advertisement

Journal of Chemical Ecology

, Volume 34, Issue 7, pp 882–897 | Cite as

Odor Detection in Insects: Volatile Codes

  • M. de Bruyne
  • T. C. Baker
Review Article

Abstract

Insect olfactory systems present models to study interactions between animal genomes and the environment. They have evolved for fast processing of specific odorant blends and for general chemical monitoring. Here, we review molecular and physiological mechanisms in the context of the ecology of chemical signals. Different classes of olfactory receptor neurons (ORNs) detect volatile chemicals with various degrees of specialization. Their sensitivities are determined by an insect-specific family of receptor genes along with other accessory proteins. Whereas moth pheromones are detected by highly specialized neurons, many insects share sensitivities to chemical signals from microbial processes and plant secondary metabolism. We promote a more integrated research approach that links molecular physiology of receptor neurons to the ecology of odorants.

Keywords

Insects Olfaction Receptors Pheromones Drosophila Lepidoptera Behavior Antenna Odor binding proteins Evolution Sensillum Odor plumes Plant volatiles 

References

  1. Almaas, T. J., Christensen, T. A., and Mustaparta, H. 1991. Chemical communication in heliothine moths I. Antennal receptor neurons encode several features of intra- and interspecific odorants in the male corn earworm moth Helicoverpa zea. J. Comp. Physiol A 169:249–258.Google Scholar
  2. Altner, H., and Prillinger, L. 1980. Ultrastructure of invertebrate chemo-, thermo- and hygroreceptors and its functional significance. Int. Rev. Cytol 67:69–139.Google Scholar
  3. Anderson, P., Hansson, B. S., and Löfqvist, J. 1995. Plant-odour-specific receptor neurones on the antennae of female and male Spodoptera littoralis. Physiol. Entomol. 20:189–198.Google Scholar
  4. Angeli, S., Ceron, F., Scaloni, A., Monit, M., Monteforti, G., Minocci, A., Petacchi, R., and Pelosi, P. 1999. Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur. J. Biochem. 262:745–754.PubMedGoogle Scholar
  5. Anton, S., and Rospars, J.-P. 2004. Quantitative analysis of olfactory receptor neuron projections in the antennal lobe of the malaria mosquito, Anopheles gambiae. J. Comp. Neurol 475:315–326.PubMedGoogle Scholar
  6. Baker, T. C., and Haynes, K. F. 1987. Manoeuvres used by flying male oriental fruit moths to relocate a sex pheromone plume in an experimentally shifted wind-field. Physiol. Entomol 12:263–279.Google Scholar
  7. Baker, T. C., and Haynes, K. F. 1989. Field and laboratory electroantennographic measurements of pheromone plume structure correlated with oriental fruit moth behaviour. Physiol. Entomol 14:1–12.Google Scholar
  8. Baker, T. C., and Vogt, R. G. 1988. Measured behavioral latency in response to sex-pheromone loss in the large silk moth Antheraea polyphemus. J. Exp. Biol 137:29–38.PubMedGoogle Scholar
  9. Baker, T. C., Willis, M. A., Haynes, K. F., and Phelan, P. L. 1985. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol 10:257–265.Google Scholar
  10. Baker, T. C., Fadamiro, H. Y., and Cossé, A. A. 1998. Moth uses fine tuning for odor resolution. Nature (London) 393:530.Google Scholar
  11. Baker, T. C., Quero, C., Ochieng, S. A., and Vickers, N. J. 2006. Inheritance of olfactory preferences. II. Olfactory receptor neuron responses from Heliothis subflexa x Heliothis virescens hybrid moths. Brain Behav., Evol 68:75–89.Google Scholar
  12. Bartelt, R. J., Schaner, A. M., and Jackson, L. L. 1985. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol 11:1747–1756.Google Scholar
  13. Bau, J., Justus, K. A., and Cardé, R. T. 2002. Antennal resolution of pheromone plumes in three moth species. J. Insect Physiol 48:433–442.PubMedGoogle Scholar
  14. Behrend, K. 1971. Riechen im wasser und in luft bei Dytiscus marginalis L. J. Comp. Physiol 75:108–122.Google Scholar
  15. Benton, R., Sachse, S., Michnick, S. W., and Vosshall, L. B. 2006. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLOS Biol 4:e20.PubMedGoogle Scholar
  16. Berg, B. G., and Mustaparta, M. 1995. The significance of major pheromone components and interspecific signals as expressed by receptor neurons in the oriental tobacco budworm moth, Helicoverpa assulta. J Comp Physiol A 177:683–694.Google Scholar
  17. Blight, M. M., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1995. Antennal perception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae). J. Chem. Ecol 21:1649–1664.Google Scholar
  18. Boeckh, J., Ernst, K.-D., and Selsam, P. 1987. Neurophysiology and neuroanatomy of the olfactory pathway in the cockroach, pp. 39–43, in S. D. Roper, and J. Atema (eds.). Olfaction and taste IX. Annals New York Academy of Sciences, New York.Google Scholar
  19. Bohbot, J., Pitts, R. J., Kwon, H. W., Rutzler, M., Robertson, H. M., and Zwiebel, L. J. 2007. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol. Biol 16:525–537.PubMedGoogle Scholar
  20. Bruce, T. J. A., Wadhams, L. J., and Woodcock, C. M. 2005. Insect host location: a volatile situation. Trends Plant Sci. 10:269–274.PubMedGoogle Scholar
  21. Buck, L. B., and Axel, R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187.PubMedGoogle Scholar
  22. Christensen, T. A., and Hildebrand, J. G. 2002. Pheromonal and host-odor processing in the insect antennal lobe: how different? Curr. Opin. Neurobiol 12:393–399.PubMedGoogle Scholar
  23. Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J., and Carlson, J. R. 1999a. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338.PubMedGoogle Scholar
  24. Clyne, P. J., Certel, S., De Bruyne, M., Zaslavsky, L., Johnson, W., and Carlson, J. R. 1999b. The odor-specificities of a subset of olfactory receptor neurons are governed by acj6, a POU domain transcription factor. Neuron 22:339–347.PubMedGoogle Scholar
  25. Cossé, A. A., Todd, J. L., and Baker, T. C. 1998. Neurons discovered on male Helicoverpa zea antennae that correlate with pheromone-mediated attraction and interspecific antagonism. J. Comp. Physiol. A 182:585–594.Google Scholar
  26. Couto, A., Alenius, M., and Dickson, B. J. 2005. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol 15:1535–1547.PubMedGoogle Scholar
  27. David, C. T., Kennedy, J. S., Ludlow, A. R., Perry, J. N., and Wall, C. 1982. A re-appraisal of insect flight towards a point source of wind-borne odor. J. Chem. Ecol 8:1207–1215.Google Scholar
  28. Davis, E. E. 1984. Development of lactic acid-receptor sensitivity and host-seeking behaviour in newly emerged female Aedes aegypti mosquitoes. J. Insect Physiol 30:211–215.Google Scholar
  29. De Bruyne, M., Clyne, P. J., and Carlson, J. R. 1999. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci 19:4520–4532.PubMedGoogle Scholar
  30. De Bruyne, M., Foster, K., and Carlson, J. R. 2001. Odor coding in the Drosophila antenna. Neuron 30:537–552.PubMedGoogle Scholar
  31. Dekker, T., Ibba, I., Siju, K. P., Stensmyr, M. C., and Hansson, B. S. 2006. Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr. Biol 16:101–109.PubMedGoogle Scholar
  32. Dobritsa, A., Van Der Goes Van Naters, W. M., Warr, C. G., Steinbrecht, R. A., and Carlson, J. R. 2003. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841.PubMedGoogle Scholar
  33. Domingue, M. J., Musto, C. J., Linn, C. E. Jr, Roelofs, W. L., and Baker, T. C. 2007. Evidence of olfactory antagonistic release as a facilitator of evolutionary shifts in pheromone blend usage in Ostrinia spp. (Lepidoptera: Crambidae). J. Insect Physiol 53:488–496.PubMedGoogle Scholar
  34. Du, G., and Prestwich, G. D. 1995. Protein structure encodes the ligand binding specificity in pheromone binding proteins. Biochemistry 34:8726–8732.PubMedGoogle Scholar
  35. Elmore, T., and Smith, D. P. 2001. Putative Drosophila odor receptor OR43b localizes to dendrites of olfactory neurons. Insect Biochem. Mol. Biol 31:791–798.PubMedGoogle Scholar
  36. Endo, K., Aoki, T., Yoda, Y., Kimura, K., and Hama, C. 2007. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nature Neurosci 10:153–160.PubMedGoogle Scholar
  37. Esslen, J., and Kaissling, K.-E. 1976. Zahl und Verteilung antennalen Sensillen bei der Honigbiene (Apis melifera L.). Zoomorphologie 83:227–251.Google Scholar
  38. Faucher, C., Forstreuter, M., Hilker, M., and de Bruyne, M. 2006. Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J. Exp. Biol. 209:2739–2748.PubMedGoogle Scholar
  39. Firestein, S. 2001. How the olfactory system makes sense of scents. Nature 413:211–218.PubMedGoogle Scholar
  40. Fishilevich, E., Domingos, A. I., Asahina, K., Naef, F., Vosshall, L. B., and Louis, M. 2005. Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr. Biol 15:2086–2096.PubMedGoogle Scholar
  41. Fraser, A. M., Mechaber, W. L., and Hildebrand, J. G. 2003. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J. Chem. Ecol. 29:1813–1833.PubMedGoogle Scholar
  42. Galindo, K., and Smith, D. P. 2001. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 159:1059–1072.PubMedGoogle Scholar
  43. Galizia, C. G., and Menzel, R. 2000. Probing the olfactory code. Nature Neurosci 3:853–854.PubMedGoogle Scholar
  44. Goldman, A. L., Van Der Goes Van Naters, W. M., Lessing, D., Warr, C. G., and Carlson, J. R. 2005. Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666.PubMedGoogle Scholar
  45. Goulding, S. E., Zur Lage, P., and Jarman, A. P. 2000. amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25:69–78.PubMedGoogle Scholar
  46. Grant, A. J., Wigton, B. E., Aghajanian, J. G., and O’Connell, R. J. 1995. Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide. J. Comp. Physiol. A Sens. Neural Behav. Physiol 177:389–396.Google Scholar
  47. Grosse-Wilde, E., Svatos, A., and Krieger, J. 2006. A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem. Senses 31:547–555.PubMedGoogle Scholar
  48. Grosse-Wilde, E., Gohl, T., Bouché, E., Breer, H., and Krieger, J. 2007. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci 25:2364–2373.PubMedGoogle Scholar
  49. Guerin, P. M., Städler, E., and Buser, H. R. 1983. Identification of host plant attractants for the carrot fly, Psilae rosae. J. Chem. Ecol. 9:843–861.Google Scholar
  50. Guo, S., and Kim, J. 2007. Molecular evolution of Drosophila odorant receptor genes. Mol. Biol. Evol 24:1198–1207.PubMedGoogle Scholar
  51. Gupta, B. P., and Rodrigues, V. 1997. Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes to Cell 2:225–233.Google Scholar
  52. Gupta, B. P., Flores, G. V., Banerjee, U., and Rodrigues, V. 1998. Patterning an epidermal field: Drosophila Lozenge, a member of the AML-1/Runt family of transcription factors, specifies olfactory sense organ type in a dose-dependent manner. Dev.Biol 203:400–411.PubMedGoogle Scholar
  53. Hallem, E. A., and Carlson, J. R. 2006. Coding of odors by a receptor repertoire. Cell 125:143–160.PubMedGoogle Scholar
  54. Hallem, E. A., Fox, A. N., Zwiebel, L. J., and Carlson, J. R. 2004. Mosquito receptor for human sweat odorant. Nature 427:212–213.PubMedGoogle Scholar
  55. Hansson, B. S. 1995. Olfaction in lepidoptera. Cell. Mol. Life Sci 51:1003–1027.CrossRefGoogle Scholar
  56. Hansson, B. S., and Baker, T. C. 1991. Differential adaptation rates in a male moth’s sex pheromone receptor neurons. Naturwiss 78:517–520.Google Scholar
  57. Hansson, B. S., and Christensen, T. A. 1999. Functional characteristics of the antennal lobe, pp. 126–162, in B. Hansson (ed.). Insect OlfactionSpringer, Berlin.Google Scholar
  58. Hansson, B. S., Toth, M., Löfstedt, C., Szöcs, G., Subchev, M., and Löfqvist, J. 1990. Pheromone variation among eastern European and a western Asian population of the turnip moth Agrotis segetum. J Chem Ecol 16:1611–1622.Google Scholar
  59. Hansson, B. S., Larsson, M., and Leal, W. S. 1999. Green leaf volatile-detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol. Entomol 24:121–126.Google Scholar
  60. Haynes, K. F., and Baker, T. C. 1989. An analysis of anemotactic flight in female moths stimulated by host odour and comparison with the males’ response to sex pheromone. Physiol. Entomol 14:279–289.Google Scholar
  61. Heinbockel, T., and Kaissling, K.-E. 1996. Variability of olfactory receptor neuron responses of female silkmoths (Bombyx mori L.) to benzoic acid and (+/−)-linalool. J. Insect Physiol 42:565–578.Google Scholar
  62. Hildebrand, J. G., and Shepherd, G. M. 1997. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631.PubMedGoogle Scholar
  63. Hill, C. A., Fox, A. N., Pitts, R. J., Kent, L. B., Tan, P. L., Chrystal, M. A., Cravchik, A., Collins, F. H., Robertson, H. M., and Zwiebel, L. J. 2002. G protein-coupled receptors in Anopheles gambiae. Science 298:176–178.PubMedGoogle Scholar
  64. Ishida, Y., and Leal, W. S. 2005. Rapid inactivation of a moth pheromone. Proc. Natl. Acad. Sci. USA 102:14075–14079.PubMedGoogle Scholar
  65. Jones, W. D., Nguyen, T.-A. T., Kloss, B., Lee, K. J., and Vosshall, L. B. 2005. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol 15:R119–R121.PubMedGoogle Scholar
  66. Jones, W. D., Cayirlioglu, P., Kadow, I. G., and Vosshall, L. B. 2007. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90.PubMedGoogle Scholar
  67. Justus, K. A., and Cardé, R. T. 2002. Flight behaviour of two moths, Cadra cautella and Pectinophora gossypiella, in homogeneous clouds of pheromone. Physiol. Entomol 27:67–75.Google Scholar
  68. Justus, K. A., Cardé, R. T., and French, A. S. 2005. Dynamic properties of antennal responses to pheromone in two moth species. J. Neurophysiol 93:2233–2239.PubMedGoogle Scholar
  69. Kaissling, K. E. 1987. R. H. Wright lectures on insect olfaction, in K. Colbow (ed.). Simon Fraser University Press, Burnaby, BC, Canada.Google Scholar
  70. Kaissling, K.-E., Meng, L. Z., and Bestmann, H. J. 1989. Responses of the bombykol receptor cells to (Z.E.)-4,6-hexadecadiene and linalool. J. Comp. Physiol. A Sens. Neural Behav. Physiol 165:147–154.Google Scholar
  71. Keil, T. 1997. Comparative morphogenesis of sensilla: a review. Int. J. Insect Morphol. Embryol 26:151–160.Google Scholar
  72. Kendra, P. E., Montgomery, W. S., Mateo, D. M., Puche, H., Epsky, N. D., and Heath, R. R. 2005. Effect of age on EAG response and attraction of female Anastrepha suspensa (Diptera: Tephritidae) to ammonia and carbon dioxide. Environ. Entomol 34:584–490.CrossRefGoogle Scholar
  73. Kennedy, J. S., Ludlow, A. R., and Sanders, C. J. 1981. Guidance of flying male moths by wind-borne sex pheromone. Physiol. Entomol 6:395–412.Google Scholar
  74. Kiely, A., Authier, A., Kralicek, A., Warr, C. G., and Newcomb, C. D. 2007. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J. Neurosci. Methods 159:189–194.PubMedGoogle Scholar
  75. King, J. R., Christensen, T. A., and Hildebrand, J. G. 2000. Response characteristics of an identified, sexually dimorphic olfactory glomerulus. J. Neurosci 20:2391–2399.PubMedGoogle Scholar
  76. Kleineidam, C., Romani, R., Tautz, J., and Isidoro, N. 2000. Ultrastructure and physiology of the CO2 sensitive sensillum ampullaceum in the leaf-cutting ant Atta sexdens. Anthropod Struct. Dev. 29:43–55.Google Scholar
  77. Kreher, S. A., Kwon, J. Y., and Carlson, J. R. 2005. The molecular basis of odor coding in the Drosophila Larva. Neuron 46:445–456.PubMedGoogle Scholar
  78. Krieger, J., Raming, K., Dewer, Y., Bette, S., Conzelmann, S., and Breer, H. 2002. A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur. J. Neurosci 16:619–628.PubMedGoogle Scholar
  79. Krieger, J., Klink, O., Mohl, C., and Raming, K. 2003. A candidate odorant receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A Sens. Neural Behav. Physiol 189:519.Google Scholar
  80. Krieger, J., Grosse-Wilde, E., Gohl, T., Dewer, Y., Raming, K., and Breer, H. 2004. Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci. USA 101:11845–11850.PubMedGoogle Scholar
  81. Krieger, J., Grosse-Wilde, E., Gohl, T., and Breer, H. 2005. Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. Neurosci 21:2167–2176.PubMedGoogle Scholar
  82. Kwon, H. W., Rutzler, M., and Zwiebel, L. J. 2006. Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 103:13526–13531.PubMedGoogle Scholar
  83. Kwon, J. Y., Dahanukar, A., Weiss, L. A., and Carlson, J. R. 2007. The molecular basis of CO2 reception in Drosophila. Proc. Natl. Acad. Sci. USA 104:3574–3578.PubMedGoogle Scholar
  84. Lacher, V. 1964. Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifira L.). Z. vergl. Physiol. 48:587–623.Google Scholar
  85. Larsson, M., Domingos, A. I., Jones, W. D., Chiappa, M. E., Amrein, H., and Vosshall, L. B. 2004. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714.PubMedGoogle Scholar
  86. Leal, W. S., Chen, A. M., Ishida, Y., Chiang, V. P., Erickson, M. L., Morgan, T. L., and Tsuruda, J. M. 2005. Kinetics and molecular properties of pheromone binding and release. Proc. Natl. Acad. Sci. USA 102:5386–5391.PubMedGoogle Scholar
  87. Linn, C. E. Jr, Campbell, M. G., and Roelofs, W. L. 1986. Male moth sensitivity to multicomponent pheromones: critical role of female-released blend in determining the functional role of components and active space of the pheromone. J. Chem. Ecol 12:659–668.Google Scholar
  88. Linn, C. E. Jr, Musto, C. J., Domingue, M. J., Baker, T. C., and Roelofs, W. L. 2007. Support for (Z)-11-hexadecanal as a pheromone antagonist in Ostrinia nubilalis: flight tunnel and single sensillum studies with a New York population. J. Chem. Ecol 33:909–921.PubMedGoogle Scholar
  89. Liu, Y. B., and Haynes, K. F. 1992. Filamentous nature of pheromone plumes protects integrity of signal from background chemical noise in cabbage looper moth, Trichoplusia ni. J.Chem.Ecol 18:299–307.Google Scholar
  90. Löfstedt, C., Hansson, B. S., Dijkerman, H. J., and Herrebout, W. M. 1990. Behavioral and electrophysiological activity of unsaturated analogues of the pheromone tetradecenyl acetate in the small ermine moth Yponomeuta rorellus. Physiol. Entomol 15:47–54.Google Scholar
  91. Maibeche-Coisne, M., Nikonov, A. A., Ishida, Y., Jacquin-Joli, E., and Leal, W. S. 2004. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc. Natl. Acad. Sci. USA. 101:11459–11464.PubMedGoogle Scholar
  92. Mafra-Neto, A., and Cardé, R. T. 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.Google Scholar
  93. Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T., and Fuyama, F. 2007. Odorant-binding proteins OBP57d and OBP57e affect taste Perception and host-plant preference in Drosophila sechellia. PLoS Biol. 5:5118Epub, May.Google Scholar
  94. Mcbride, C. S. 2007. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc. Natl. Acad. Sci. USA 104:4996–5001.PubMedGoogle Scholar
  95. Meijerink, J., Braks, M. A. H., and van Loon, J. J. A. 2001. Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components. J. Insect Physiol. 47:455–464.PubMedGoogle Scholar
  96. Nakagawa, T., Sakurai, T., Nishioka, T., and Touhara, K. 2005. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642.PubMedGoogle Scholar
  97. Nikonov, A., and Leal, W. S. 2002. Peripheral coding of sex pheromone and a behavioral antagonist in the Japanese beetle, Popillia japonica. J. Chem. Ecol 28:1075–1089.PubMedGoogle Scholar
  98. Nozawa, M., and Nei, M. 2007. Evolutionary dynamics of olfactory receptor genes in Drosophila species. Proc. Natl. Acad. Sci. USA 104:7122–7127.PubMedGoogle Scholar
  99. Ochieng’, S. A., and Baker, T. C. 2002. Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J. Comp. Physiol. A 188:325–333.Google Scholar
  100. Olsson, S. B., Linn, C. E. Jr, and Roelofs, W. L. 2006. The chemosensory basis for behavioral divergence involved in sympatric host shifts. I. Characterizing olfactory receptor neuron classes responding to key host volatiles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:279–288.PubMedGoogle Scholar
  101. Park, S.-K., Shanbhag, S. R., Dubin, A. E., De Bruyne, M., Wang, Q., Yu, P., Shimoni, N., D’mello, S., Carlson, J. R., Harris, G. L., Steinbrecht, R. A., and Pikielny, C. W. 2002. Inactivation of olfactory sensilla of a single morphological type differentially affects the response of Drosophila to odors. J. Neurobiol 51:248–260.PubMedGoogle Scholar
  102. Pelosi, P., Zhou, J. J., Ban, L. P., and Calvello, M. 2006. Soluble proteins in insect chemical communication. Cell. Mol. Life. Sci 63:1658–1676.PubMedGoogle Scholar
  103. Persoons, C. J., Verwiel, P. E., Ritter, F. J., Talman, E., Nooijen, P. J. F., and Nooijen, W. J. 1976. Sex pheromones of the American cockroach, Periplaneta americana: A tentative. structure of periplanone B. Tetrahedron Lett 24:2055–2058.Google Scholar
  104. Phelan, P. L. 1997. Genetics and phylogenetics in the evolution of sex pheromones, pp. 563–579, in R. T. Cardé, and A. K. Minks (eds.). Insect Pheromone Research: New DirectionsChapman & Hall, New York.Google Scholar
  105. Quero, C., Fadamiro, H. Y., and Baker, T. C. 2001. Responses of male Helicoverpa zea to single pulses of sex pheromone and behavioural antagonist. Physiol. Entomol 26:106–115.Google Scholar
  106. Raghu, S. 2004. Functional significance of phytochemical lures to dacine fruit flies (Diptera: Tephritidae): an ecological and evolutionary synthesis. Bull. Entomol. Res 94:385–399.PubMedGoogle Scholar
  107. Ray, K., and Rodrigues, V. 1995. Cellular events during development of olfactory sense organs in Drosophila melanogaster. Dev. Biol 167:426–438.PubMedGoogle Scholar
  108. Ray, A., Van Der Goes Van Naters, W. M., Shiraiwa, T., and Carlson, J. R. 2007. Mechanisms of odor receptor gene choice in Drosophila. Neuron 53:553–569.Google Scholar
  109. Roelofs, W. L., and Rooney, A. P. 2003. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc. Nat. Acad. Sci 100:9179–9184.PubMedGoogle Scholar
  110. Roelofs, W. L., Liu, W., Hao, G., Jiao, H., Rooney, A. P., and Linn, C. E. Jr 2002. Evolution of moth sex pheromones via ancestral genes. Proc. Natl. Acad. Sci. USA 99:13621–13626.PubMedGoogle Scholar
  111. Robertson, H. M., and Wanner, K. W. 2006. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403.PubMedGoogle Scholar
  112. Robertson, H. M., Warr, C. G., and Carlson, J. R. 2003. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 100:14537–14542.PubMedGoogle Scholar
  113. Roessingh, P., Sen, X., and Menken, S. B. J. 2007. Olfactory receptors on the maxillary palps of small ermine moth larvae: Evolutionary history of benzaldehyde sensitivity. J. Comp. Physiol. A Sens. Neural Behav. Physiol 193:635–647.Google Scholar
  114. Rostelien, T., Stranden, M., Borg-Karlson, A. K., and Mustaparta, H. 2005. Olfactory receptor neurons in two heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem Senses 30:443–461.PubMedGoogle Scholar
  115. Rumbo, E. R., and Kaissling, K.-E. 1989. Temporal resolution of odor pulses by three types of pheromone receptor cells in Antheraea polyphemus. J Comp Physiol A 165:281–291.Google Scholar
  116. Sakurai, T., Nakagawa, T., Mitsuno, H., Mori, H., Endo, Y., Anoue, S., Yasukochi, Y., Touhara, K., and Nishioka, T. 2004. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. USA 101:16653–16658.PubMedGoogle Scholar
  117. Sandler, B. H., Nikinova, L., Leal, W. S., and Clardy, J. 2000. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol 7:143–151.PubMedGoogle Scholar
  118. Sass, H. 1976. Zur nervoesen codierung von geruchreizen bei Periplaneta americana. J. Comp. Physiol. A Sens. Neural Behav. Physiol 107:49–65.Google Scholar
  119. Sato, K. ,Pellegrin, M., Nakagawa, T., Vosshall, L. B., and Touhara, K. 2008. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006.PubMedGoogle Scholar
  120. Shanbhag, S. R., Müller, B., and Steinbrecht, R. A. 2000. Atlas of olfactory organs of Drosophila melanogaster 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Struct. Dev 29:211–229.PubMedGoogle Scholar
  121. Shanbhag, S. R., Hekmat-Scafe, D., Kim, M. S., Park, S. K., Carlson, J. R., Pikielny, C., Smith, D. P., and Steinbrecht, R. A. 2001. Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microsc. Res. Tech 55:297–306.PubMedGoogle Scholar
  122. Shields, V. D. C., and Hildebrand, J. G. 2001. Responses of a population of antennal olfactory receptor cells in the female moth Manduca sexta to plant-associated volatile organic compounds. J. Comp. Physiol. A Sens. Neural Behav. Physiol 186:1135–1151.Google Scholar
  123. Stange, G. 1992. High resolution measurement of atmospheric carbon dioxide concentration changes by the labial palp organ of the moth Heliothis armigera (Lepidoptera:Noctuidae). J. Comp. Physiol. A Sens. Neural Behav. Physiol 171:317–324.Google Scholar
  124. Stange, G., and Stowe, S. 1999. Carbon-dioxide sensing structures in terrestrial arthropods. Microsc. Res. Tech 47:416–427.PubMedGoogle Scholar
  125. Steinbrecht, R. A. 1997. Pore structures in insect olfactory sensilla: A review of data and concepts. Int. J. Insect Morphol. Embryol 26:229–245.Google Scholar
  126. Steinbrecht, R. A. 1999. Olfactory receptors, pp. 156–176, in E. Eguchi, and Y. Tominaga (eds.). Atlas of arthropod sensory receptorsSpringer-Verlag, Tokyo.Google Scholar
  127. Steiner, S., Erdmann, D., Steidle, J. L. M., and Ruther, J. 2007. Host habitat assessment by a parasitoid using fungal volatiles. BMC Frontiers Zool 4:3.Google Scholar
  128. Stensmyr, M. C., Larsson, M. C., Bice, S., and Hansson, B. S. 2001. Detection of fruit- and flower-emitted volatiles by olfactory receptor neurons in the polyphagous fruit chafer Pachnoda marginata (Coleoptera: Cetoniinae). J Comp Physiol [A] 187:509–519.Google Scholar
  129. Stensmyr, M. C., Dekker, T., and Hansson, B. S. 2003. Evolution of the olfactory code in the Drosophila melanogaster subgroup. Proc. Natl. Acad. Sci. USA 270:2333–2340.Google Scholar
  130. Störtkuhl, K. F., and Kettler, R. 2001. Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98:9381–9385.PubMedGoogle Scholar
  131. Stranden, M., Liblikas, I., Konig, W. A., Almaas, T. J., Borg-Karlson, A. K., and Mustaparta, H. 2003. (−)-Germacrene D receptor neurones in three species of heliothine moths: structure-activity relationships. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:563–577Epub 2003 Jun 25.PubMedGoogle Scholar
  132. Suh, G. S., Wong, A. M., Hergarden, A. C., Wang, J. W., Simon, A. F., Benzer, S., Axel, R., and Anderson, D. J. 2004. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431:854–859Epub 2004 Sep 15.PubMedGoogle Scholar
  133. Syed, Z., and Leal, W. S. 2007. Maxillary palps are broad spectrum odorant detectors in Culex quinquefasciatus. Chem Senses 32:727–7382007.PubMedGoogle Scholar
  134. Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D. A., and Leal, W. S. 2006. Pheromone reception in fruit flies expressing a moth’s odorant receptor. Proc. Natl. Acad. Sci. USA 103:16538–16543.PubMedGoogle Scholar
  135. Taneja, J., and Guerin, P. M. 1995. Oriented responses of the triatomine bugs Rhodnius prolixus and Triatoma infestans to vertebrate odours on a servosphere. J. Comp. Physiol. A Sens. Neural Behav. Physiol 176:455–464.Google Scholar
  136. Takken, W., and Knols, B. G. J. 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol 44:131–157.PubMedGoogle Scholar
  137. Todd, J. L., Baker, and T. C. 1999. Function of peripheral olfactory organs, pp. 67–96, in B. S. Hansson (ed.). Insect olfactionSpringer-Verlag, Berlin.Google Scholar
  138. Tunstall, N. E., Sirey, T., Newcomb, R. D., and Warr, C. G. 2007. Selective pressures on Drosophila chemosensory receptor genes. J. Mol. Evol 64:628–636.PubMedGoogle Scholar
  139. Turlings, T. C., and Ton, J. 2006. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 9:421–427.PubMedGoogle Scholar
  140. Van Der Goes Van Naters, W. M., and Carlson, J. R. 2007. Receptors and neurons for fly odors in Drosophila. Curr. Biol 17:606–612.PubMedGoogle Scholar
  141. Van Der Goes Van Naters, W. M., Bootsma, L., Den Otter, C. J., and Belemtougri, R. G. 1996. Search for tsetse attractants: A structure–activity study on 1-octen-3-ol in Glossina fuscipes fuscipes (Diptera: Glossinidae). J. Chem. Ecol 22:343–355.Google Scholar
  142. Vickers, N. J., and Baker, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Nat. Acad Sci. USA 91:5756–5760.PubMedGoogle Scholar
  143. Vickers, N. J., and Baker, T. C. 1996. Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens(F.) males. J. Comp. Physiol. A 178:831–847.Google Scholar
  144. Vickers, N. J., and Baker, T. C. 1997. Chemical communication in heliothine moths. VII. Correlation between diminished responses to point-source plumes and single filaments similarly tainted with a behavioral antagonist. J. Comp. Physiol 180:523–536.Google Scholar
  145. Vickers, N. J., Christensen, T. A., Baker, T. C., and Hildebrand, J. G. 2001. How do odour plume dynamics influence the brain’s olfactory code. Nature 410:466–470.PubMedGoogle Scholar
  146. Visser, J. H. 1986. Host odour perception in phytophagous insects. Annu. Rev. Entomol 31:121–144.Google Scholar
  147. Vogt, R. G. 2005. Molecular basis of pheromone detection in insects, pp. 753–804, in L. I. Gilbert, K. Iatro, and S. Gill (eds.). Comprehensive insect physiology, biochemistry, pharmacology and molecular biology. Volume 3Endocrinology. Elsevier, London.Google Scholar
  148. Vogt, R. G., and Riddiford, L. M. 1981. Pheromone binding and inactivation by moth antennae. Nature 293:161–163.PubMedGoogle Scholar
  149. Vogt, R. G., Prestwich, G. D., and Lerner, M. R. 1991. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J. Neurobiol 22:74–84.PubMedGoogle Scholar
  150. Vosshall, L. B., and Stocker, R. F. 2007. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci 30:505–533.PubMedGoogle Scholar
  151. Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A., and Axel, R. 1999. A spatial map of the olfactory receptor expression in the Drosophila antenna. Cell 96:725–736.PubMedGoogle Scholar
  152. Wanner, K. W., Anderson, A. R., Trowell, S. C., Theilmann, D. A., Robertson, H. M., and Newcomb, R. D. 2007. Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol 16:107–119.PubMedGoogle Scholar
  153. Wetzel, C. H., Behrendt, H.-J., Gisselmannn, G., Störtkuhl, K. F., Hovemann, B. T., and Hatt, H. 2001. Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl. Acad. Sci. USA 98:9377–9380.PubMedGoogle Scholar
  154. Wicher, D., Schäfer, R., Bauernfeind, R., Stensmyr, M.C., Heller, R., Heinemann, S.H., and Hansson, B. S. 2008. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011.PubMedGoogle Scholar
  155. Wistrand, M., Käll, L., and Sonnhammer, E. L. 2006. A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci 15:509–521.PubMedGoogle Scholar
  156. Witzgall, P., and Priesner, E. 1991. Wind-tunnel study on attraction inhibitor in male Coleophora laricella Hbn. (Lepidoptera:Coleophoridae). J. Chem. Ecol 17:1355–1362.Google Scholar
  157. Xu, P., Atkinson, R., Jones, D. N., and Smith, D. P. 2005. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200.PubMedGoogle Scholar
  158. Yao, C. A., Ignell, R., and Carlson, J. R. 2005. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J. Neurosci 25:8359–8367.PubMedGoogle Scholar
  159. Zacharuk, R. Y. 1985. Antennae and sensilla, pp. 1–69, in G. A. Kerkut, and L. I. Gilbert (eds.). Comprehensive insect physiology biochemistry and pharmacology, vol.6, Nervous system: sensory. Pergamon press, Oxford.Google Scholar
  160. Zacharuk, R. Y., and Shields, V. D. C. 1991. Sensilla of immature insects. Annu. Rev. Entomol 36:331–354.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Biological SciencesMonash UniversityClaytonAustralia
  2. 2.Center for Chemical Ecology, Department of EntomologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations