Journal of Chemical Ecology

, Volume 34, Issue 7, pp 854–866 | Cite as

Navigational Strategies Used by Insects to Find Distant, Wind-Borne Sources of Odor

  • Ring T. CardéEmail author
  • Mark A. Willis
Review Article


Insects locate many resources important to survival by tracking along wind-borne odor plumes to their source. It is well known that plumes are patchy distributions of high concentration packets of odor interspersed with clean air, not smooth Gaussian distributions of odor intensity. This realization has been crucial to our understanding of plume-tracking behavior, because insect locomotory movements and sensory processing typically take place in the range of tens to hundreds of milliseconds, permitting them to respond to the rapid changes in odor concentration they experience in plumes. Because odor plumes are not comprised of smooth concentration gradients, they cannot provide the directional information necessary to allow plume-tracking insects to steer toward the source. Many experiments have shown that, in the species examined, successful source location requires two sensory inputs: the presence of the attractive odor and the detection of the direction of the wind bearing that odor. All plume-tracking insects use the wind direction as the primary directional cue that enables them to steer their movements toward the odor source. Experimental manipulations of the presence and absence of the odor, and the presence, absence, or direction of the wind during plume tracking, have begun to resolve the relationship between these two sensory inputs and how they shape the maneuvers we observe. Experiments, especially those undertaken in the natural wind and odor environments of the organisms in question and those directed at understanding the neural processing that underlie plume tracking, promise to enhance our understanding of this remarkable behavior.


Orientation Odor dispersion Optomotor anemotaxis Drosophila Moth Tsetse fly Pheromone Host odor 


  1. Atema, J. 1996. Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. Biol. Bull. 191:129–138.Google Scholar
  2. Aylor, D. E., Parlange, J.-Y., and Granett, J. 1976. Turbulent dispersion of disparlure in the forest and male gypsy moth response. Environ. Entom. 5:1026–1032.Google Scholar
  3. Baker, T. C. 1990. Upwind flight and casting flight: complementary and tonic systems used for location of sex pheromone sources by male moths, pp. 18–25, in K. B. Døving (ed.). Proceedings of the Tenth International Symposium on Olfaction and Taste. GCS A/S, Oslo, Norway.Google Scholar
  4. Baker, T. C., and Haynes, K. F. 1987. Manoeuvres used by flying male oriental fruit moths to relocate a sex pheromone plume in an experimentally shifted wind-field. Physiol. Entomol. 12:263–279.Google Scholar
  5. Baker, T. C., and Haynes, K. F. 1996. Pheromone-mediated optomotor anemotaxis and altitude control exhibited by male oriental fruit moths in the field. Physiol. Entomol. 21:20–32.Google Scholar
  6. Baker, T. C., and Kuenen, L. P. S. 1982. Pheromone source location by flying moths: a supplementary non-anemotactic mechanism. Science 216:424–427.PubMedGoogle Scholar
  7. Baker, T. C., and Vickers, N. J. 1994. Behavioral reaction times of male moths to pheromone filaments and visual stimuli: determinants of flight track shape and direction, pp. 838–841, in K. Kurihura, N. Suzuki, and H. Ogawa (eds.). Olfaction and Taste IXSpringer, Tokyo, Japan.Google Scholar
  8. Baker, T. C., Willis, M. A., and Phelan, P. L. 1984. Optomotor anemotaxis polarizes self-steered zigzagging in flying moths. Physiol. Entomol. 9:365–376.Google Scholar
  9. Baker, T. C., Willis, M. A., Haynes, K. F., and Phelan, P. L. 1985. A pulsed cloud of sex pheromone elicits upwind flight in male moths. Physiol. Entomol. 10:257–265.Google Scholar
  10. Belanger, J. H., and Arbas, E. 1998. Behavioral strategies underlying pheromone-modulated flight in moths: lesions from simulation studies. J. Comp. Physiol. A. 183:345–360.Google Scholar
  11. Belanger, J. H., and Willis, M. A. 1996. Adaptive control of odor-guided locomotion: behavioral flexibility as an antidote to environmental unpredictability. Adapt. Behav. 4:217–253.Google Scholar
  12. Bossert, W. H., and Wilson, E. O. 1963. The analysis of olfactory communication in animals. J. Theor. Biol. 5:443–469.PubMedGoogle Scholar
  13. Brady, J., Gibson, G., and Packer, M. J. 1989. Odour movement, wind direction, and the problem of host-finding by tsetse flies. Physiol. Entomol. 14:369–380.Google Scholar
  14. Budick, S. A., and Dickinson, M. H. 2006. Free-flight responses of Drosophila melanogaster to attractive odors. J. Exp. Biol. 209:3001–3017.PubMedGoogle Scholar
  15. Bursell, E. 1987. The effect of wind-borne odours on the direction of flight in tsetse flies. Physiol. Entomol. 12:149–156.Google Scholar
  16. Cardé, R. T. 1984. Chemo-orientation in flying insects, pp. 111–124, in W. J. Bell, and R.T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall Ltd., London.Google Scholar
  17. Cardé, R. T., and Hagaman, T. E. 1979. Behavioral responses of the gypsy moth in a wind tunnel to air-borne enantiomers of disparlure. Environ. Entomol. 8:475–484.Google Scholar
  18. Cardé, R. T., and Hagaman, T. E. 1984. Mate location strategies of gypsy moths in dense populations. J. Chem. Ecol. 10:25–31.Google Scholar
  19. Cardé, R. T., and Knols, B. G. J. 2000. Effects of light levels and plume structure on the orientation manoeuvres of male gypsy moths flying along pheromone plumes. Physiol. Entomol. 25:141–150.Google Scholar
  20. Charlton, R. E., and Cardé, R. T. 1990. Orientation of male gypsy moths, Lymantria dispar (L.), to pheromone sources: the role of olfactory and visual cues. J. Insect Behav. 3:443–469.Google Scholar
  21. Charlton, R. E., Kanno, H., Collins, R. D., and Cardé, R. T. 1993. Influence of pheromone concentration and ambient temperature on flight of the gypsy moth, Lymantria dispar (L.), in a sustained-flight wind tunnel. Physiol. Entomol. 18:349–362.Google Scholar
  22. Clements, A. N. 1999. The Biology of Mosquitoes. vol. 2. Sensory Reception and Behaviour. CABI Publishing, Wallingford, Oxon, UK.Google Scholar
  23. Colvin, J., Brady, J., and Gibson, G. 1989. Visually-guided, upwind turning behaviour of free-flying tsetse flies in odour-laden wind: a wind-tunnel study. Physiol. Entomol. 14:31–39.Google Scholar
  24. Conner, W. E., and Best, B. A. 1988. Biomechanics of release of sex pheromone in moths: effects of body posture on local airflow. Physiol. Entomol. 13:15–20.Google Scholar
  25. Conover, M. R. 2007. Predator–Prey Dynamics. The Role of Olfaction. CRC Press, Boca Raton, FL.Google Scholar
  26. Cossé, A. A., and Baker, T. C. 1996. House flies and pig manure volatiles: Wind tunnel behavioral studies and electrophysiological evaluations. J. Agric. Entomol. 13:301–317.Google Scholar
  27. Costantini, C., Birkett, M. A., Gibson, G., Ziesmann, J., Sagnon, N’ F., Mohammed, H. A., Coluzzi, M., and Pickett, J. A. 2001. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Med. Vet. Entomol. 15:259–266.PubMedGoogle Scholar
  28. David, C. T., and Kennedy, J. S. 1987. The steering of zigzagging flight by male gypsy moths. Naturwissenschaften 74:194–196.Google Scholar
  29. David, C. T., Kennedy, J. S., Ludlow, A. R., Perry, J. N., and Wall, C. 1982. A reappraisal of insect flight towards a distant point source of wind-borne odor. J. Chem. Ecol. 8:1207–1215.Google Scholar
  30. David, C. T., Kennedy, J. S., and Ludlow, A. R. 1983. Finding of a sex pheromone source by gypsy moths released in the field. Nature 303:804–806.Google Scholar
  31. Daykin, P. N., Kellogg, F. E., and Wright, R. H. 1965. Host finding and repulsion of Aedes aegypti. Can. Entomol. 97:239–263.Google Scholar
  32. De Jong, R., and Knols, B. G. J. 1996. Selection of biting sites by mosquitoes, pp. 89–103, in G. R. Bock, and G. Cardew (eds.). Olfaction in Mosquito–Host Interactions, CIBA Found. Symp. 200Wiley, Chichester, UK.Google Scholar
  33. Dekker, T., Takken, W., and Cardé, R. T. 2001. Structure of host-odour plumes influences catch of Anopheles gambiae s.s. and Aedes aegypti in a dual-choice olfactometer. Physiol. Entomol. 26:124–134.Google Scholar
  34. Dekker, T., Geier, M., and Cardé, R. T. 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odors. J. Exp. Biol. 208:2963–2972.PubMedGoogle Scholar
  35. Dindonis, L. L., and Miller, J. R. 1980. Host finding behavior of onion flies, Hylemia antiqua. Environ. Entomol. 9:769–772.Google Scholar
  36. Dusenbery, D. B. 1989. Optimal search direction for an animal flying or swimming in a wind or current. J. Chem. Ecol. 15:2511–2519.Google Scholar
  37. Dusenbery, D. B. 1990. Upwind searching for an odor plume is sometimes optimal. J. Chem. Ecol. 16:1971–1976.Google Scholar
  38. Elkinton, J. S., and Cardé, R. T. 1983. Appetitive flight behavior of male gypsy moths (Lepidoptera: Lymantriidae). Environ. Entomol. 12:1702–1707.Google Scholar
  39. Elkinton, J. S., and Cardé, R. T. 1984. Odor dispersion, pp. 73–91, in W. J. Bell, and R. T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, London.Google Scholar
  40. Elkinton, J. S., Cardé, R. T., and Mason, C. J. 1984. Evaluation of time-average dispersion models for estimating pheromone concentration in a deciduous forest. J. Chem. Ecol. 10:1081–1108.Google Scholar
  41. Elkinton, J. S., Schal, C., Ono, T., and Cardé, R. T. 1987. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol. Entomol. 12:399–406.Google Scholar
  42. Fares, Y., Sharpe, P. J. H., and Magnuson, C. E. 1983. Pheromone dispersion in forests. J. Theor. Biol. 84:355–359.Google Scholar
  43. Farkas, S. R., and Shorey, H. H. 1972. Chemical trail-following by flying insects: a mechanism for orientation to a distant odor source. Science 178:67–68.PubMedGoogle Scholar
  44. Farrell, J. A., Murlis, J., Long, X., Li, W., and Cardé, R. T. 2002. Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes. Environ. Fluid Mech. 2:143–169.Google Scholar
  45. Geier, M., Bosch, O. J., and Boeckh, J. 1998. Influence of host odour plume on upwind flight of mosquitoes towards hosts. J. Exp. Biol. 202:1939–1648.Google Scholar
  46. Gibson, G., and Torr, S. J. 1999. Visual and olfactory responses of haematophagous Diptera to host stimuli. Med. Vet. Entomol. 13:2–23.PubMedGoogle Scholar
  47. Gibson, G., Packer, M. J., Steullet, P., and Brady, J. 1991. Orientation of tsetse flies to wind, within and outside host odour plumes in the field. Physiol. Entomol. 16:47–56.Google Scholar
  48. Gillies, M. T. 1980. The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culcidae): a review. Bull. Entomol. Res. 80:525–532.CrossRefGoogle Scholar
  49. Gillies, M. T., and Wilkes, T. J. 1974. Evidence for downwind flight by host-seeking mosquitoes. Nature 252:388–389.Google Scholar
  50. Gillies, M. T., and Wilkes, T. J. 1978. The effect of high fences on the dispersal of some West African mosquitoes (Diptera: Culicidae). Bull. Entomol. Res. 68:401–408.Google Scholar
  51. Grant, A. J., and O’Connell, R. J. 1996. Electrophysiological responses from receptor neurons in mosquito maxillary palp sensilla, pp. 233–253, in G.R. Bock, and G. Cardew (eds.). Olfaction in Mosquito–Host Interactions, CIBA Found. Symp. 200. Wiley, Chichester, UK.Google Scholar
  52. Gray, J. R., Pawlowski, V., and Willis, M. A. 2002. A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space. J. Neurosci. Methods 120:211–223.PubMedGoogle Scholar
  53. Greenfield, M. D. 1981. Moth sex pheromones: an evolutionary perspective. Fla. Entomol. 64:4–17.Google Scholar
  54. Griffiths, N., Paynter, Q., and Brady, J. 1995. Rates of progress up odour plumes by tsetse flies: a mark-release video study of the timing of odour source location by Glossina pallidipes. Physiol. Entomol. 20:100–108.Google Scholar
  55. Hangartner, W. 1967. Spezifität und Inaktivierung des Spurpheromons von Lasius fuliginosus Latr. und Orientierung der Arbeiterinnen im Duftfeld. Zeit. Vergl. Physiol. 57:103–136.Google Scholar
  56. Hardie, J., Gibson, G., and Wyatt, T. D. 2001. Insect behaviours associated with resource finding, pp. 87–109, in I. P. Woiwod, D. R. Reynolds, and C. D. Thomas (eds.). Insect Movement: Mechanisms and Consequences. CAB International, Wallingford, Oxon, UK.Google Scholar
  57. Hawkes, C., and Croaker, T. H. 1979. Factors affecting the behavioural responses of the adult cabbage root fly, Delia brassicae, to host plant odour. Entomol. Exp. Appl. 25:45–58.Google Scholar
  58. Judd, G. J. R., and Borden, J. H. 1988. Long-range host-finding behaviour of the onion fly Delia antiqua (Diptera: Anthomyiidae): ecological and physiological constraints.. J. Appl. Ecol. 25:829–845.Google Scholar
  59. Judd, G. J. R., and Borden, J. H. 1989. Distant olfacotory response of the onion fly, Delia antiqua, to host-plant odour in the field. Physiol. Entomol. 14:429–441.Google Scholar
  60. Justus, K. A., and Cardé, R. T. 2002. Flight behaviour of males of two moths, Cadra cautella and Pectinophora gossypiella, in homogenous clouds of pheromone. Physiol. Entomol. 27:67–75.Google Scholar
  61. Justus, K. A., Murlis, J., Jones, C., and Cardé, R. T. 2002a. Measurement of odor-plume structure in a wind tunnel using a photoionization detector and a tracer gas. Environ. Fluid Mech. 2:115–142.Google Scholar
  62. Justus, K. A., Schofield, S. W., Murlis, J., and Cardé, R. T. 2002b. Flight behaviour of Cadra cautella males in rapidly pulsed pheromone plumes. Physiol. Entomol. 27:58–66.Google Scholar
  63. Kaae, R. S., and Shorey, H. H. 1973. Sex pheromones of Lepidoptera. 44. Influence of environmental conditions on pheromone communication and mating in Pectinophora gossypiella. Environ. Entomol. 2:1081–1084.Google Scholar
  64. Kaiser, L., Willis, M. A., and Cardé, R. T. 1994. Flight manoeuvers used by a parasitic wasp to locate host-infested plant. Entomol. Exp. Appl. 70:285–294.Google Scholar
  65. Kellogg, F. E., Frizel, D. E., and Wright, R. H. 1962. The olfactory guidance of flying insects. IV. Drosophila. Can Entomol. 94:884–888.Google Scholar
  66. Kennedy, J. S. 1939. The visual responses of flying mosquitoes. Proc. Zool. Soc. London 109:221–242.Google Scholar
  67. Kennedy, J. S. 1978. The concepts of olfactory ‘arrestment’ and ‘attraction.’. Physiol. Entomol. 3:91–98.Google Scholar
  68. Kennedy, J. S. 1983. Zigzagging and casting as a programmed response to wind-borne odour: a review. Physiol. Entomol. 8:109–120.Google Scholar
  69. Kennedy, J. S. 1986. Some current issues in orientation to odour sources, pp. 11–25, in T. L. Payne, M. C. Birch, and C. J. E. Kennedy (eds.). Mechanisms in Insect OlfactionOxford University Press, Oxford, England.Google Scholar
  70. Kennedy, J. S., and Marsh, D. 1974. Pheromone-regulated anemotaxis in flying moths. Science 184:999–1001.PubMedGoogle Scholar
  71. Kennedy, J. S., Ludlow, A. R., and Saunders, C. J. 1981. Guidance of flying male moths by wind-borne sex pheromone. Physiol. Entomol. 6:395–412.Google Scholar
  72. Kuenen, L. P. S., and Baker, T. C. 1982. A non-anemotactic mechanism used in pheromone source location by flying moths. Physiol. Entomol. 7:277–289.Google Scholar
  73. Kuenen, L. P. S., and Cardé, R. T. 1994. Strategies for recontacting a lost pheromone plume: casting and upwind flight in the male gypsy moth. Physiol. Entomol. 19:15–29.Google Scholar
  74. Li, W., Farrell, J. A., and Cardé, R. T. 2001. Tracking of fluid-advected odor plumes: strategies inspired by insect orientation to pheromone. Adapt. Behav. 9:143–167.Google Scholar
  75. Li, W., Farrell, J. A., Pang, S., and Arrieta, R. M. 2006. Moth-inspired chemical plume tracing on an autonomous underwater vehicle. IEEE Trans. Robotics 22:292–307.Google Scholar
  76. Loudon, C. 2003. The biomechanical design of an insect antenna as an odor capture device, pp. 609–630, in G. J. Blomquist, and R. G. Vogt (eds.). Insect Pheromone Biochemistry and Molecular BiologyElsevier Academic, Amsterdam, The Netherlands.Google Scholar
  77. Mafra-Neto, A., and Cardé, R. T. 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.Google Scholar
  78. Mafra-Neto, A., and Cardé, R. T. 1995. Influence of plume structure and pheromone concentration on upwind flight of Cadra cautella males. Physiol. Entomol. 20:117–133.Google Scholar
  79. Mafra-Neto, A., and Cardé, R. T. 1996. Dissection of the pheromone-modulated flight of moths using single-pulse response as a template. Experientia 52:373–379.Google Scholar
  80. Marsh, D., Kennedy, J. S., and Ludlow, A. R. 1978. An analysis of anemotactic zigzagging flight in male moths stimulated by pheromone. Physiol. Entomol. 3:221–240.Google Scholar
  81. Mechaber, W. L., Capaldo, C. T., and Hildebrand, J. G. 2002. Behavioral responses of adult female tobacco hornworms, Manduca sexta, to hostplant volatiles change with age and mating status. 8 pp. J. Insect Sci. 2.5. Available online: Scholar
  82. Miksad, R. W., and Kittredge, J. 1979. Pheromone aerial dispersal: a filament model. 14th Conf. Agric. For. Met., Am. Met. Soc. pp. 236–243.Google Scholar
  83. Murlis, J., and Jones, C. D. 1981. Fine-scale structure of odour plumes in relation to distant pheromone and other attractant sources. Physiol. Entomol. 6:71–86.Google Scholar
  84. Murlis, J., Bettany, B. W., Kelley, J., and Martin, L. 1982. The analysis of flight paths of male Egyptian cotton leafworm moths, Spodoptora littoralis, to a sex pheromone source in the field. Physiol. Entomol. 7:435–441.Google Scholar
  85. Murlis, J., Willis, M. A., and Cardé, R. T. 1990. Odour signals: patterns in time and space, pp. 6–17, in K. Døving (ed.). Proceedings of the Tenth International Symposium on Olfaction and Taste. GCS A/S, Oslo, Norway.Google Scholar
  86. Murlis, J., Elkinton, J. S., and Cardé, R. T. 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37:505–532.Google Scholar
  87. Murlis, J., Willis, M. A., and Cardé, R. T. 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25:211–222.Google Scholar
  88. Preiss, R., and Kramer, E. 1986. Mechanism of pheromone orientation in flying moths. Naturwissenschaften 73:555–557.Google Scholar
  89. Sabelis, M. W., and Schipper, P. 1984. Variable wind directions and anemotactic strategies of searching for an odour plume. Oecologia 63:225–228.Google Scholar
  90. Sane, S. P., and Jacsobson, N. P. 2006. Induced airflow in flying insects II. Measurement of induced flow. J. Exp. Biol. 209:43–56.PubMedGoogle Scholar
  91. Schal, C. 1982. Intraspecific vertical stratification as a mate finding mechanism in tropical cockroaches. Science 215:1405–1407.PubMedGoogle Scholar
  92. Sutton, O. G. 1953. Micrometerology. McGraw-Hill, New York.Google Scholar
  93. Takken, W., and Knols, B. G. J. 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44:131–157.PubMedGoogle Scholar
  94. Takken, W., Dekker, T., and Wijnholds, Y. G. 1997. Odor-mediated flight behavior of Anopheles gambiae Giles sensu stricto and An. stephensi Liston in response to CO2, acetone, and 1-octen-3-ol (Diptera: Culicidae). J. Insect Behav. 3:395–407.Google Scholar
  95. Vickers, N. J. 2000. Mechanisms of animal navigation in odor plumes. Biol. Bull. 198:203–212.PubMedGoogle Scholar
  96. Vickers, N. J. 2006. Winging it: moth flight behavior and responses of olfactory neurons are shaped by pheromone plume dynamics. Chem. Senses 31:155–166.PubMedGoogle Scholar
  97. Vickers, N. J., and Baker, T. C. 1992. Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera: Noctuidae). J. Insect Behav. 5:669–687.Google Scholar
  98. Vickers, N. J., and Baker, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Nat. Acad. Sci. U. S. A. 91:5756–5760.Google Scholar
  99. Vickers, N. J., and Baker, T. C. 1996. Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J. Comp. Physiol. A. 178:831–847.Google Scholar
  100. Vickers, N. J., and Baker, T. C. 1997. Flight of Heliothis virescens males in the field in response to sex pheromone. Physiol. Entomol. 22:277–285.Google Scholar
  101. Vickers, N. J., Christensen, T. A., Baker, T. C., and Hildebrand, J. G. 2001. Odour-plume dynamics influence the brain’s olfactory code. Nature 410:466–470.PubMedGoogle Scholar
  102. Von Keyserlingk, H. 1984. Close range orientation of flying Lepidoptera to pheromone sources in a laboratory wind tunnel and the field. Meded. Fac. Landbouwwet. Rijksuniv. Gent 49:683–689.Google Scholar
  103. Wehner, R. 1996. Middle scale navigation: the insect case. J. Exp. Biol. 199:125–127.PubMedGoogle Scholar
  104. Weissburg, M. 2000. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198:188–202.PubMedGoogle Scholar
  105. Willis, M. A. 2008. Odor plumes and animal orientation, in A. Basbaum et al. (eds). Volume 4, Olfaction & Taste: In, The Senses: A Comprehensive References, Elsevier, Oxford (in press).Google Scholar
  106. Willis, M. A., and Arbas, E. A. 1991. Odor-modulated upwind flight of the sphinx moth, Manduca sexta. J. Comp. Physiol. A. 178:699–706.Google Scholar
  107. Willis, M. A., and Avondet, J. L. 2005. Odor-modulated orientation in walking male cockroaches, Periplaneta americana (L.), and the effects of odor plumes of different structures. J. Exp. Biol. 208:721–735.PubMedGoogle Scholar
  108. Willis, M. A., and Baker, T. C. 1984. Effects of intermittent and continuous pheromone stimulation on the flight behaviour of the oriental fruit moth, Grapholita molesta. Physiol. Entomol. 9:341–354.Google Scholar
  109. Willis, M. A., and Baker, T. C. 1987. Comparison of maneuvers used by walking versus flying Grapholita molesta males during pheromone-mediated upwind movement. J. Insect Physiol. 33:875–883.Google Scholar
  110. Willis, M. A., and Cardé, R. T. 1990. Pheromone-modulated optomotor response in male gypsy moths, Lymantria dispar L.: upwind flight in a pheromone plume in different wind speeds. J. Comp. Physiol. A 167:699–706.Google Scholar
  111. Willis, M. A., Murlis, J., and Cardé, R. T. 1991. Pheromone-mediated upwind flight of male gypsy moths, Lymantria dispar, in a forest. Physiol. Entomol. 16:507–521.Google Scholar
  112. Willis, M. A., David, C. T., Murlis, J., and Cardé, R. T. 1994. Effects of pheromone plume structure and visual stimuli on the pheromone-modulated upwind flight of male gypsy moths (Lymantria dispar) in a forest (Lepidoptera: Lymantriidae). J. Insect Behav. 7:385–409.Google Scholar
  113. Wolf, H., and Wehner, R. 2006. Desert ants compensate for navigation uncertainty. J. Exp. Biol. 208:4223–4230.Google Scholar
  114. Wright, R. H. 1958. The olfactory guidance of flying insects. Can. Entomol. 90:81–89.CrossRefGoogle Scholar
  115. Wyatt, T. D., Phillips, A. D. G., and Grégoire, J. C. 1993. Turbulence, trees and semiochemicals: wind-tunnel orientation of the predator Rhizophagus grandis, to its barkbeetle prey, Dendroctonus micans. Physiol. Entomol. 18:204–210.Google Scholar
  116. Zanen, P. O., Sabelis, M. W., Buonaccorsi, J. P., and Cardé, R. T. 1994. Search strategies of fruit flies in steady and shifting winds in the absence of food odours. Physiol. Entomol. 19:335–341.Google Scholar
  117. Zöllner, G. E., Torr, S. J., Ammann, C., and Meixner, F. X. 2004. Dispersion of carbon dioxide plumes in African woodland: implication for host finding by tsetse flies. Physiol. Entomol. 29:381–394.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of BiologyCase Western Reserve UniversityClevelandUSA

Personalised recommendations