Advertisement

Protein Expression Changes in Maize Roots in Response to Humic Substances

  • Paolo Carletti
  • Antonio Masi
  • Barbara Spolaore
  • Patrizia Polverino De Laureto
  • Mariangela De Zorzi
  • Loris Turetta
  • Massimo Ferretti
  • Serenella NardiEmail author
Article

Abstract

Humic substances are known to affect plant metabolism at different levels. We characterized humic substances extracted from earthworm feces by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and used them to treat corn, Zea mays L., seedlings to investigate changes in patterns of root protein expression. After root plasma membrane extraction and purification, proteins were separated by two-dimensional gel electrophoresis, and differential spot intensities were evaluated by image analysis. Finally, 42 differentially expressed proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The majority of them were downregulated by the treatment with humic substances. The proteins identified included malate dehydrogenase, ATPases, cytoskeleton proteins, and different enzymes belonging to the glycolytic/gluconeogenic pathways and sucrose metabolism. The identification of factors involved in plant responses to humic substances may improve our understanding of plant–soil cross-talk, and enable a better management of soil resources.

Keywords

DRIFT spectroscopy Humic substances LC-MS-MS Proteomics Sucrose metabolism Two-dimensional gel electrophoresis Zea mays L. 

Notes

Acknowledgments

The authors thank Dr. Ornella Francioso of the Dipartimento di Scienze e Tecnologie Agroambientali, Università degli Studi di Bologna, for the DRIFT characterization of humic substances. The authors are also grateful to Prof. Angelo Fontana (CRIBI) for fruitful discussions.

References

  1. Amor, Y., Haigler, C. H., Johnson, S., Wainscott, M., and Delmer, D. P. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92:9353–9357.PubMedCrossRefGoogle Scholar
  2. Anderson, L. E., and Carol, A. A. 2005. Enzyme co-localization in the pea leaf cytosol: 3-P-glycerate kinase, glyceraldehyde-3-P dehydrogenase, triose-P isomerase and aldolase. Plant Sci. 169:620–628.CrossRefGoogle Scholar
  3. Berczi, A., and Moller, I. M. 2000. Redox enzymes in the plant plasma membrane and their possible roles. Plant Cell Environ. 23:1287–1302.CrossRefGoogle Scholar
  4. Canellas, L. P., Olivares, F. L., Okorokova-Facanha, A. L., and Facanha, A. R. 2002. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 130:1951–1957.PubMedCrossRefGoogle Scholar
  5. Cesco, S., Romheld, V., Varanini, Z., and Pinton, R. 2000. Solubilization of iron by water-extractable humic substances. J. Plant Nutr. Soil Sci. 163:285–290.CrossRefGoogle Scholar
  6. Clapp, C. E., and Hayes, M. H. B. 1999. Sizes and shapes of humic substances. Soil Sci. 164:777–789.CrossRefGoogle Scholar
  7. Datta, R., and Chourey, P. S. 2001. Sugar-regulated control of alpha-tubulin in maize cell suspension culture. Plant Cell Rep. 20:262–266.CrossRefGoogle Scholar
  8. Delmer, D. P., and Potikha, T. S. 1997. Structures and functions of annexins in plants. Cell. Mol. Life Sci. 53:546–553.PubMedCrossRefGoogle Scholar
  9. Ding, G., Novak, J. M., Amarasiriwardena, D., Hunt, P. G., and Xing, B. S. 2002. Soil organic matter characteristics as affected by tillage management. Soil Sci. Soc. Am. J. 66:421–429.Google Scholar
  10. Ephritikhine, G., Ferro, M., and Rolland, N. 2004. Plant membrane proteomics. Plant Physiol. Biochem. 42:943–962.PubMedCrossRefGoogle Scholar
  11. Fao-Unesco. 1990. World Soil Map, Revised Legend. FAO, Rome, Italy.Google Scholar
  12. Francioso, O., Sanchez-Cortes, S., Casarini, D., Garcia-Ramos, J. V., Ciavatta, C., and Gessa, C. 2002. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration. J. Mol. Struct. 609:137–147.CrossRefGoogle Scholar
  13. Gressel, N., Inbar, Y., Singer, A., and Chen, Y. 1995. Chemical and spectroscopic properties of leaf-litter and decomposed organic-matter in the Carmel Range, Israel. Soil Biol. Biochem. 27:23–31.CrossRefGoogle Scholar
  14. Hesse, H., Kreft, O., Maimann, S., Zeh, M., and Hoefgen, R. 2004. Current understanding of the regulation of methionine biosynthesis in plants. J. Exp. Bot. 55:1799–1808.PubMedCrossRefGoogle Scholar
  15. Holtgrawe, D., Scholz, A., Altmann, B., and Scheibe, R. 2005. Cytoskeleton-associated, carbohydrate-metabolizing enzymes in maize identified by yeast two-hybrid screening. Physiol. Plant. 125:141–156.CrossRefGoogle Scholar
  16. Hurkman, W. J., and Tanaka, C. K. 1986. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 81:802–806.PubMedCrossRefGoogle Scholar
  17. Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J., and Kang, K. Y. 2004. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578.PubMedCrossRefGoogle Scholar
  18. Kittur, F. S., Lalgondar, M., Yu, H. Y., Bevan, D. R., and Esen, A. 2007. Maize beta-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for beta-glucosidase aggregation. J. Biol. Chem. 282:7299–7311.PubMedCrossRefGoogle Scholar
  19. Konopka-Postupolska, D. 2007. Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. Protoplasma 230:203–215.PubMedCrossRefGoogle Scholar
  20. MacCarthy, P. 2001. The principles of humic substances. Soil Sci. 166:738–751.CrossRefGoogle Scholar
  21. Marmagne, A., Rouet, M. A., Ferro, M., Rolland, N., Alcon, C., Joyard, J., Garin, J., Barbier-Brygoo, H., and Ephritikhine, G. 2004. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol. Cell. Proteomics 3:675–691.PubMedCrossRefGoogle Scholar
  22. Merlo, L., Ghisi, R., Rascio, N., and Passera, C. 1991. Effects of humic substances on carbohydrate-metabolism of maize leaves. Can. J. Plant Sci. 71:419–425.Google Scholar
  23. Minelli, A., Omodeo, P., Rota, E., and Sambugar, B. 1995. Anellida Clitellata, Aphanomeura, pp. 12–13, in A. Minelli, S. Rufo, and S. La Posta (eds.). Checklist delle Specie della Fauna ItalianaCalderoni, Bologna.Google Scholar
  24. Moeder, W., Del Pozo, O., Navarre, D., Martin, G., and Klessig, D. 2007. Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Mol. Biol. 63:273–287.PubMedCrossRefGoogle Scholar
  25. Montecchio, D., Francioso, O., Carletti, P., Pizzeghello, D., Chersich, S., Previtali, F., and Nardi, S. 2006. Thermal analysis (TG-DTA) and drift spectroscopy applied to investigate the evolution of humic acids in forest soil at different vegetation stages. J. Therm. Anal. Calorim. 83:393–399.CrossRefGoogle Scholar
  26. Muscolo, A., and Nardi, S. 1997. Auxin or auxin-like activity of humic matter, pp. 987–992, in J. Drozd, S.S. Gonet, N. Senesi, and J. Werber (eds.). The Role of Humic Substances in the Ecosystems and Environmental ProtectionPolish Society of Humc Substances, Wroclaw, Poland.Google Scholar
  27. Muscolo, A., Sidari, M., Attina, E., Francioso, O., Tugnoli, V., and Nardi, S. 2007a. Biological activity of humic substances is related to their chemical structure. Soil Sci. Soc. Am. J. 71:75–85.Google Scholar
  28. Muscolo, A., Sidari, M., Francioso, O., Tugnoli, V., and Nardi, S. 2007b. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. J. Chem. Ecol. 33:115–129.PubMedCrossRefGoogle Scholar
  29. Nardi, S., Concheri, G., Pizzeghello, D., Sturaro, A., Rella, R., and Parvoli, G. 2000a. Soil organic matter mobilization by root exudates. Chemosphere 41:653–658.PubMedCrossRefGoogle Scholar
  30. Nardi, S., Pizzeghello, D., Gessa, C., Ferrarese, L., Trainotti, L., and Casadoro, G. 2000b. A low molecular weight humic fraction on nitrate uptake and protein synthesis in maize seedlings. Soil Biol. Biochem. 32:415–419.CrossRefGoogle Scholar
  31. Nardi, S., Pizzeghello, D., Muscolo, A., and Vianello, A. 2002. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 34:1527–1536.CrossRefGoogle Scholar
  32. Nardi, S., Muscolo, A., Vaccaro, S., Baiano, S., Spaccini, R., and Piccolo, A. 2007. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and Krebs cycle in maize seedlings. Soil Biol. Biochem. 39:3138–3146.Google Scholar
  33. Nelson, N., and Harvey, W. R. 1999. Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol. Rev. 79:361–385.PubMedGoogle Scholar
  34. Niemeyer, J., Chen, Y., and Bollag, J. M. 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared-spectroscopy. Soil Sci. Soc. Am. J. 56:135–140.Google Scholar
  35. Perkins, D. N., Pappin, D. J. C., Creasy, D. M., and Cottrell, J. S. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567.PubMedCrossRefGoogle Scholar
  36. Pflug, W., and Ziechmann, W. 1981. Inhibition of malate dehydrogenase by humic acids. Soil Biol. Biochem. 13:293–299.CrossRefGoogle Scholar
  37. Pinton, R., Varanini, Z., Vizzotto, G., and Maggioni, A. 1992. Soil humic substances affect transport-properties of tonoplast vesicles isolated from oat roots. Plant Soil 142:203–210.CrossRefGoogle Scholar
  38. Pizzeghello, D., Nicolini, G., and Nardi, S. 2001. Hormone-like activity of humic substances in Fagus sylvaticae forests. New Phytol. 151:647–657.CrossRefGoogle Scholar
  39. Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V., and Nardi, S. 2004. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J. Exp. Bot. 55:803–813.PubMedCrossRefGoogle Scholar
  40. Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko, I., Guldener, U., Mannhaupt, G., Munsterkotter, M. et al. 2004. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32:5539–5545.PubMedCrossRefGoogle Scholar
  41. Sandelius, A. S., and Morrè, D. J. 1990. Plasma membrane isolation, pp. 45–75, in C. Larsson, and I. M. Møller (eds.). The Plant Plasma MembraneSpringer-Verlag, Berlin.Google Scholar
  42. Santoni, V., Rouquie, D., Doumas, P., Mansion, M., Boutry, M., Degand, H., Dupree, P., Packman, L., Sherrier, J., Prime, T. et al. 1998. Use of a proteome strategy for tagging proteins present at the plasma membrane. Plant J. 16:633–641.PubMedCrossRefGoogle Scholar
  43. Santoni, V., Doumas, P., Rouquie, D., Mansion, M., Rabilloud, T., and Rossignol, M. 1999a. Large scale characterization of plant plasma membrane proteins. Biochimie 81:655–661.PubMedCrossRefGoogle Scholar
  44. Santoni, V., Rabilloud, T., Doumas, P., Rouquie, D., Mansion, M., Kieffer, S., Garin, J., and Rossignol, M. 1999b. Towards the recovery of hydrophobic proteins on two-dimensional electrophoresis gels. Electrophoresis 20:705–711.PubMedCrossRefGoogle Scholar
  45. Santoni, V., Kieffer, S., Desclaux, D., Masson, F., and Rabilloud, T. 2000. Membrane proteomics: Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21:3329–3344.PubMedCrossRefGoogle Scholar
  46. Sukalovic, V. H. T., Vuletic, M., Ignjatovic-Micic, D., and Vucinic, Z. 1999. Plasma-membrane-bound malate dehydrogenase activity in maize roots. Protoplasma 207:203–212.CrossRefGoogle Scholar
  47. Visser, S. A. 1987. Effect of humic substances on mitochondrial respiration and oxidative phosphorylation. Sci. Total Environ. 62:347–354.PubMedCrossRefGoogle Scholar
  48. Wasteneys, G. O., and Galway, M. E. 2003. Remodelling the cytoskeleton for growth and form: An overview with some new views. Annu. Rev. Plant Biol. 54:691–722.PubMedCrossRefGoogle Scholar
  49. Wilkins, M. R., Appel, R. D., Van Eyk, J. E., Chung, M. C. M., Gorg, A., Hecker, M., Huber, L. A., Langen, H., Link, A. J., Paik, Y. K. et al. 2006. Guidelines for the next 10 years of proteomics. Proteomics 6:4–8.PubMedCrossRefGoogle Scholar
  50. Zandonadi, D., Canellas, L., and Façanha, A. 2007. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583–1595.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paolo Carletti
    • 1
  • Antonio Masi
    • 1
  • Barbara Spolaore
    • 2
  • Patrizia Polverino De Laureto
    • 2
  • Mariangela De Zorzi
    • 1
  • Loris Turetta
    • 1
  • Massimo Ferretti
    • 1
  • Serenella Nardi
    • 1
    Email author
  1. 1.Department of Agricultural BiotechnologyUniversity of PaduaPadovaItaly
  2. 2.Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative (CRIBI)University of PaduaPadovaItaly

Personalised recommendations