Journal of Chemical Ecology

, Volume 34, Issue 5, pp 622–627

Flight Tunnel Responses of Female Grape Berry Moth (Paralobesia viteana) to Host Plants

  • Dong H. Cha
  • Stephen P. Hesler
  • Charles L. Moser
  • Satoshi Nojima
  • Charles E. LinnJr.
  • Wendell L. Roelofs
  • Gregory M. Loeb
Article

Abstract

Semiochemicals play important roles in mate and host recognition of herbivorous insects, such as moths, and flight tunnels have been an effective tool in the identification of these bioactive compounds. However, more work has been carried out on pheromones than on host plant cues, and few examples exist where flight tunnel evaluations of host cues have resulted in a lure that is attractive under field conditions. Our goal was to determine whether the flight tunnel could be used to evaluate the response of a specialist moth, grape berry moth (GBM), to its host plant (grapevines), by incorporating ecological and physiological aspects of GBM biology. We found grape shoot tips and mature leaves were more attractive to female GBM than unripe and ripe berries or flowers. Under optimized flight tunnel conditions, approximately 80% of tested females flew upwind and closely approached or landed on the most preferred target. Mating status, wind speed, the time of day, and the presence/absence of patterns that resemble grape tissues on the top of the flight tunnel all significantly affected the responses of female GBM. Consideration of these factors in flight tunnel assays will aid in the development of a synthetic lure that can be used to monitor female moths in the field.

Keywords

Flight tunnel Paralobesia viteana Vitis spp. Host volatiles Tortricidae 

References

  1. Allison, P. D. 2001. Logistic Regression Using the SAS System: Theory and Application. SAS Institute, Cary, N.C.Google Scholar
  2. Ansebo, L., Coracini, M. D. A., Bengtsson, M., Liblikas, I., Ramirez, M., Borg -Karlson, A. K., Tasin, M., and Witzgall, P. 2004. Antennal and behavioural response of codling moth Cydia pomonella to plant volatiles. J. Appl. Entomol. 128:488–493.CrossRefGoogle Scholar
  3. Arn, H. 1991. Sex pheromones, pp. 187– 208 in L. P. S. Van der Geest and H. H. Evenhuis (eds.). Tortricid Pests. Their Biology, Natural Enemies and Control. Elsevier, New York, NY.Google Scholar
  4. Botero-Garces, N., and Isaacs, R. 2004. Movement of the grape berry moth, Endopiza viteana: displacement distance and direction. Physiol. Entomol. 29:443–452.CrossRefGoogle Scholar
  5. Bruce, T. J. A., Wadhams, L. J., and Woodcock, C. M. 2005. Insect host location: a volatile situation. Trends. Plant Sci. 10:269–274.PubMedCrossRefGoogle Scholar
  6. Cardé, R. T. 1984. Chemo-orientation in flying insects. pp. 111–124, in W. J. Bell and R.T. Cardé (ed.). Chemical Ecology of InsectsChapman and Hall, London, UK.Google Scholar
  7. Elkinton, J. S., and Cardé, R. T. 1984. Odor dispersion, pp. 73–91, in W. J Bell, and R.T. Cardé (eds.). Chemical Ecology of InsectsChapman and Hall, London, UK.Google Scholar
  8. Hern, A., and Dorn, S. 2004. A female-specific attractant for the codling moth, Cydia pomonella, from apple fruit volatiles. Naturwissenschaften 91:77–80.PubMedCrossRefGoogle Scholar
  9. Hoffman, C. J. 1990. Development and validation of a risk assessment program for the management of grape berry moth, Endopiza viteana (Clemens), in New York state. PhD Dissertation, Cornell University, Ithaca, NY.Google Scholar
  10. Howse P., Stevens, I., and Jones, O. 1998. Insect Pheromones and Their Use in Pest Management. Chapman & Hall, London, UK.Google Scholar
  11. Hurtrel, B., and Thiery, D. 1999. Modulation of flight activity in Lobesia botrana Den. and Schiff. (Lepidoptera: Tortricidae) females studied in a wind tunnel. J. Insect Behav. 12:199–211.CrossRefGoogle Scholar
  12. Masante-Roca, I., Anton, S., Delbac, L., Dufour, M.-C., and Gadenne, C. 2007. Attraction of the grapevine moth to host and non-host plant parts in the wind tunnel: effects of plant phenology, sex, and mating status. Entomol. Exp. Appl. 122:239–245.CrossRefGoogle Scholar
  13. Nagarkatti, S., Muza, A., and Saunders, M. 2000. Meridic diet for Endopiza viteana (Lepidoptera: Tortricidae). Can. Entomol. 132:259–261.CrossRefGoogle Scholar
  14. Natale, D., Mattiacci, L., Pasqualini, E., and Dorn, S. 2004. Apple and peach fruit volatiles and the apple constituent butyl hexanoate attract female oriental fruit moth, Cydia molesta, in the laboratory. J. Appl. Entomol. 128:22–27.CrossRefGoogle Scholar
  15. Nojima, S., Linn, C, and Roelofs, W. 2003a. Identification of host fruit volatiles from flowering dogwood (Cornus florida) attractive to dogwood-origin Rhagoletis pomonella flies. J. Chem. Ecol. 29:2347–2357.PubMedCrossRefGoogle Scholar
  16. Nojima, S., Linn, C., Morris, B., Zhang, A. J, and Roelofs, W. 2003b. Identification of host fruit volatiles from hawthorn (Crataegus spp.) attractive to hawthorn-origin Rhagoletis pomonella flies. J. Chem. Ecol. 29:321–336.PubMedCrossRefGoogle Scholar
  17. Reed, H. C., and Landolt, P. J. 2002. Attraction of mated female codling moths (Lepidoptera: Tortricidae) to apples and apple odor in a flight tunnel. Florida Entomol. 85:324–329.CrossRefGoogle Scholar
  18. Ridgway, R. L., Silverstein, R. M., and Inscoe, M. N. 1990. Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York, NY.Google Scholar
  19. Roelofs, W. L., Tette, J. P., Taschenberg, E. F. , and Comeau, A. 1971. Sex pheromone of the grape berry moth: identification by classical and electroantennogram methods, and field tests. J. Insect Physiol. 17:2235–2243.PubMedCrossRefGoogle Scholar
  20. Sanders, C. J., Lucuik, G. S., and Fletcher, R. M. 1981. Response of male spruce budworm (Lepidoptera: Tortricidae) to different concentrations of sex pheromone as measured in a sustained-flight wind tunnel. Can. Entomol. 113:943–948.CrossRefGoogle Scholar
  21. Sas Institute. 2006. The GLIMMIX Procedure. <http://www.sas.com>.
  22. Taschenberg, E. F. 1945. The biology and control of the grape berry moth Polychrosis vineana (Clemens). PhD Dissertation, Cornell University, Ithaca, NY.Google Scholar
  23. Tasin, M., Anfora, G., Ioriatti, C., Carlin, S., De Cristofaro, A., Schmidt, S., Bengtsson, M., Versini, G., and Witzgall, P. 2005. Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine. J. Chem. Ecol. 31:77–87.PubMedCrossRefGoogle Scholar
  24. Tasin, M., Backman, A. C., Bengtsson, M., Ioriatti, C., and Witzgall, P. 2006a. Essential host plant cues in the grapevine moth. Naturwissenschaften 93:141–144.PubMedCrossRefGoogle Scholar
  25. Tasin, M., Backman, A. C., Bengtsson, M., Varela, N., Ioriatti, C., and Witzgall, P. 2006b. Wind tunnel attraction of grapevine moth females, Lobesia botrana, to natural and artificial grape odour. Chemoecology 16:87–92.CrossRefGoogle Scholar
  26. Tasin, M., Backman, A.-C., Coracini, M., Casado, D., Ioriatti, C., and Witzgall, P. 2007. Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68:203–209.PubMedCrossRefGoogle Scholar
  27. Thompson, J. N., and Pellmyr, O. 1991. Evolution of oviposition behavior and host preference in Lepidoptera. Annu. Rev. Entomol. 36:65–89.CrossRefGoogle Scholar
  28. Van der Geest, L. P. S., and Evenhuis, H. H. 1991. Tortricid pests. Their Biology, Natural Enemies and Control. Elsevier, New York, NY.Google Scholar
  29. Vickers, N. J., and Baker, T. C. 1992. Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera, Noctuidae). J. Insect Behavior 5:669–687.CrossRefGoogle Scholar
  30. Wallace, E. K., Albert, P. J., and Mcneil, J. N. 2004. Oviposition behavior of the eastern spruce budworm Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). J. Insect Behavior 17:145–154.CrossRefGoogle Scholar
  31. Weigle, T., Bixby, J., and English-Loeb, G. 1999. Reexamination of grape berry moth management practices in the Lake Erie region. 1998 New York State Fruit Project Reports Relating to IPM. NYS IPM Publication #216. Cornell University Cooperative Extension.Google Scholar
  32. Willis, M. A., and Baker, T. C. 1984. Effects of intermittent and continuous pheromone stimulation on the flight behavior of the oriental fruit moth, Grapholita molesta. Physiol. Entomol. 9:341–358.CrossRefGoogle Scholar
  33. Yang, Z. H., Casado, D., Ioriatti, C., Bengtsson, M., and Witzgall, P. 2005. Pheromone pre-exposure and mating modulate codling moth (Lepidoptera: Tortricidae) response to host plant volatiles. Agric. For. Entomol. 7:231–236.CrossRefGoogle Scholar
  34. Zhang, A. J., Linn, C., Wright, S., Prokopy, R., Reissig, W., and Roelofs, W. 1999. Identification of a new blend of apple volatiles attractive to the apple maggot, Rhagoletis pomonella. J. Chem. Ecol. 25:1221–1232.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dong H. Cha
    • 1
  • Stephen P. Hesler
    • 1
  • Charles L. Moser
    • 1
  • Satoshi Nojima
    • 1
  • Charles E. LinnJr.
    • 1
  • Wendell L. Roelofs
    • 1
  • Gregory M. Loeb
    • 1
  1. 1.Department of EntomologyCornell UniversityGenevaUSA
  2. 2.Department of EntomologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations