Journal of Chemical Ecology

, Volume 34, Issue 5, pp 688–695 | Cite as

Allelopathic Enhancement and Differential Gene Expression in Rice under Low Nitrogen Treatment

  • Biqing Song
  • Jun Xiong
  • Changxun Fang
  • Long Qiu
  • Riyu Lin
  • Yiyuan Liang
  • Wenxiong Lin
Article

Abstract

The allelopathy-competition separation (ACS) based approach was used to explore the biointerference relationship between rice accessions and barnyardgrass exposed to different nitrogen (N) supplies in hydroponics. Rice accession PI312777 exhibited high allelopathic potential to suppress the growth of accompanying weeds, especially when the culture solution had low N content. The non-allelopathic rice Lemont showed an opposite result. Additionally, subtractive hybridization suppression (SSH) was used to construct a forward SSH-cDNA library of PI312777 to investigate gene expression profiles under low N treatment. A total of 35 positive clones from the SSH-cDNA library were sequenced and annotated. According to the function category, 24 genes were classified into five groups related to primary metabolism, phenolic allelochemical synthesis, plant growth/cell cycle regulation, stress response/signal transduction, and protein synthesis/degradation. Among them, two up-regulated genes that encode PAL and cytochrome P450 were selected. Their transcript abundance at low N level was compared further between the allelopathic rice and its counterpart by utilizing real-time quantitative polymerase chain reaction (qRT-PCR). The transcription levels of the two genes increased in both rice accessions when exposed to low N supply, but PI312777 at a higher magnitude than Lemont. At 1, 3, and 7 days of the treatments, the corresponding relative expression levels of PAL were 11.38, 4.83, and 3.57 fold higher in PI312777 root, but there were 1.15, 2.74, and 2.94 fold increases for Lemont, compared with the control plants fed with regular nutrient. The same trend was found for cytochrome P450. These findings suggest that the stronger ability of PI312777 to suppress target weeds, especially in low N nutrient conditions, might be attributed to the stronger activation of the genes that function in de novo synthesis of allelochemicals.

Keywords

Rice allelopathy Low nitrogen Suppression subtractive hybridization (SSH) Gene expression Real time PCR 

References

  1. An, M., Liu, D. L., Johnson, I. R., and Lovett, J. V. 2003. Mathematical modelling of allelopathy: II. The dynamics of allelochemicals from living plants in the environment. Ecol. Model 161:53–66.CrossRefGoogle Scholar
  2. Anterola, A. M., Jeon, J. H., Davin, L. B., and Lewis, N. G. 2002. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism. J. Biol. Chem 277:18272–18280.PubMedCrossRefGoogle Scholar
  3. Bauwe, H., and Kolukisaoglu, U. 2003. Genetic manipulation of glycine decarboxylation. J. Exp. Bot 54:1523–1535.PubMedCrossRefGoogle Scholar
  4. Belz, R. G. 2007. Allelopathy in crop/weed interactions – an update. Pest Manag. Sci 63:308–326.PubMedCrossRefGoogle Scholar
  5. Belz, R. G., and Hurle, K. 2004. A novel laboratory screening bioassay for crop seedling allelopathy. J. Chem. Ecol 30:175–198.PubMedCrossRefGoogle Scholar
  6. Bi, H. H., Zeng, R. S., Su, L. M., An, M., and Luo, S. M. 2007. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J. Chem. Ecol 35:1089–1103.CrossRefGoogle Scholar
  7. Bryant, J. P., Chapin, F. S. III, Reichardt, P. B., and Clausen, T. P. 1987. Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia 72:510–514.CrossRefGoogle Scholar
  8. Chishake, N., and Horiguchi, T. 1997. Responses of secondary metabolism in plants to nutrient defiency. Soil Plant Nutr 43:987–991.Google Scholar
  9. Diatchenko, L., Lau, Y. F. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverslov, E. D., and Siebert, P. D. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93:6025–6030.PubMedCrossRefGoogle Scholar
  10. Dixon, R. A., and Paiva, N. L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097.PubMedCrossRefGoogle Scholar
  11. Dixon, R. A., Achnine, L., Kota, P., Liu, C. J., Reddy, M. S. S., and Wang, L. J. 2002. The phenylpropanoid pathway and plant defense-a genomics perspective. Mol. Plant Pathol 3:371–390.CrossRefGoogle Scholar
  12. Einhellig, F. A. 1999. An integrated view of allelochemicals amid multiple stress, pp. 479–494, in Ingerjit, K. M. M. Dakshini, and C. L. Foy (eds.). Principles and practices of plant ecology: Allelochemical InteractionsCRC Press LLC, Boca Raton, FL.Google Scholar
  13. Elias, M., Potock, M., Cvrokova, F., and Zarsky, V. 2002. Molecular diversity of phospholipase D in angiosperms. BMC Genomics 3:1471–2164.CrossRefGoogle Scholar
  14. Fajer, E. D., Bowers, M. D., and Bazzaz, F. A. 1992. The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in plantago: A test of the carbon/nutrient balance. Am. Nat 140:702–723.CrossRefGoogle Scholar
  15. Friebe, A. 2006. Brassinosteroids in induced resistance and induction of tolerance to abiotic stress in plants, pp. 233–242, in A. M. Rimando, and S. O. Duke (eds.). Natural Products for Pest ManagementAmerican Chemical Society, Washington, DCACS Symposium Series No. 927.Google Scholar
  16. Fritz, C., Palacios-Rojas, N., Feil, R., and Stitt, M. 2006. Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J 46:533–548.PubMedCrossRefGoogle Scholar
  17. He, H. Q., Shen, L. H., Xiong, J., Jia, X. L., Lin, W. X., and Wu, H. 2004. Conditional genetic effect of Allelopathy in rice (Oryza sativa L.) under different environmental conditions. Plant Growth Regul 44:211–218.CrossRefGoogle Scholar
  18. Kasai, T., Inoue, M., Koshiba, S., Yabuki, T., Aoki, M., Nunokawa, E., Seki, E., Matsuda, T., Matsuda, N., Tomo, Y., Shirouzu, M., Terada, T., Obayashi, N., Hamana, H., Shinya, N., Tatsuguchi, A., Yasuda, S., Yoshida, M., Hirota, H., Matsuo, Y., Tani, K., Suzuki, H., Arakawa, T., Carninci, P., Kawai, J., Hayashizaki, Y., Kigawa, T., and Yokoyama, S. 2004. Solution structure of a BolA-like protein from Mus musculus. Protein Sci 13:545–548.PubMedCrossRefGoogle Scholar
  19. Kim, K. U., Shin, D. H., Lee, I. J., and Kim, H. Y. 2000. Rice Allelopathy in Korea, pp. 57–82, in K.U. Kim, and D.H. Shin (eds.). Rice AllelopathyChan-Suk Park Publish, Korea.Google Scholar
  20. Kim, S. Y., Madrid, A. V., Park, S. T., Yang, S. J., and Olofsdotter, M. 2005. Evaluation of rice allelopathy in hydroponics. Weed Res 45:74–79.CrossRefGoogle Scholar
  21. Kovacik, J., Klejdus, B., Backor, M., and Repca, M. 2007. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci 172:393–399.CrossRefGoogle Scholar
  22. Li, L., Popko, J. L., Zhang, X. H., Osakabe, K., Tsai, C. J., Joshi, C. P., and Chiang, V. 1997. A novel mutifuctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine. Proc. Natl. Acad. Sci. USA 94:5461–5466.PubMedCrossRefGoogle Scholar
  23. Liu, J. S., Xie, J., Yang, W. D., and Li, L. X. 2006. Allelopathic effect of alexandrium tamarense on prorocentrum donghaiense under limited nutrient conditions. J. Trop. Subt. Bota 14:207–212(in Chinese).Google Scholar
  24. Luo, Q., Michaelis, C., and Weeks, G. 1994. Overexpression of a truncated cyclin B gene arrests Dictyostelium cell division during mitosis. J. Cell Sci 107:3105–3114.PubMedGoogle Scholar
  25. Macias, F. A., Molinillo, J. M. G., Varela, R. M., and Galindo, J. C. G. 2007. Allelopathy - a natural alternative for weed control. Pest Manag. Sci 63:327–348.PubMedCrossRefGoogle Scholar
  26. Mihaliak, C. A., Gershenzon, J., and Croteau, R. 1991. Lack of rapid monoterpene turnover in rooted plants: implication of theories of plant defense. Oecologia 87:373–376.CrossRefGoogle Scholar
  27. Olofsdotter, M. 1998. Allelopathy in rice, pp. 1–5, in M. Olofsdotter (ed.). Allelopathy in RiceInternational Rice Research Institute, Manila, Philippines.Google Scholar
  28. Olofsdotter, M., Jensen, L. B., Pamplona, R., Navarez, D., Lee, S. B., and Pheng, S. 2002. Towards utilization of allelopathy-the rice example, pp. 197–207, in M. J. Reigosa, and N. Pedrol (eds.). Allelopathy-from molecules to ecosystemsScience Publishers Inc. Enfield (NH), USA.Google Scholar
  29. Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nuc. Acids Res 29:2002–2007.Google Scholar
  30. Razal, R. A., Ellis, S., Singh, S., Lewist, N. G., and Towers, G. H. N. 1996. Nitrogen recycling in phenylpropanoid metabolism. Phtochemistry 41:31–35.CrossRefGoogle Scholar
  31. Reichardt, P. B., Chapin, P. S., Bryant, J. P., Matter, B. R., and Clausen, T. P. 1991. Carbon/nutrient balance as a predictor of plant defense in Alaska balsam poplar: potential importance of metabolite turnover. Oecologia 88:401–406.CrossRefGoogle Scholar
  32. Scheible, W. R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M. K., and Stitt, M. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499.PubMedCrossRefGoogle Scholar
  33. Shen, L. H., and Lin, W. X. 2007. Effects of phosphorus levels on allelopathic potential of rice co-cultured with barnyardgrass. Allelopathy J 19:393–402.Google Scholar
  34. Sheveleva, E., Chmara, W., Bohnert, H. J., and Jensen, R. G. 1997. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219.PubMedGoogle Scholar
  35. Wu, H. W., Pratley, J., Lemerle, D., and An, M. 1999. Crop cultivars with allelopathy capability. Weed Res 39:171–180.CrossRefGoogle Scholar
  36. Wysocka-Diller, J. W., Helariutta, Y., Fukaki, H., Malamy, J. E., and Benfey, P. N. 2000. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603.PubMedGoogle Scholar
  37. Xiong, J., Lin, W. X., Zhou, J. J., Wu, M. H., Chen, X. X., and He, H. Q. 2005. Studies on biointerference between barnyardgrass and rice accessions at different nitrogen regimes, pp. 501–504, in J. D. I. Harper, M. An, H. Wu, and J. H. Kent (eds.). Proceedings Fourth World Congress on AllelopathyCharles Sturt University, Wagga Wagga, NSW, Australia.Google Scholar
  38. Xu, M., Hillwig, M. L., Prisic, S., Coates, R. M., and Peters, R. J. 2004. Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic natural products. Plant J 39:309–318.PubMedCrossRefGoogle Scholar
  39. Xu, Y., and Hall, T. C. 1993. Cytosolic triosephosphate isomerase is a single gene in rice. Plant Physiol 101:683–687.PubMedCrossRefGoogle Scholar
  40. Yamagata, H., Kunimastu, K., Kamasuka, H., Kuramota, T., and Iwaski, T. 1998. Rice bifunctional a-amylase/subitilisin inhibitor: characterization, localization and changes in developmental and germinating seeds. Biosci. Biotech. Biochem 62:978–985.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Biqing Song
    • 1
    • 2
  • Jun Xiong
    • 1
    • 2
  • Changxun Fang
    • 1
    • 2
  • Long Qiu
    • 1
    • 2
  • Riyu Lin
    • 1
    • 2
  • Yiyuan Liang
    • 1
    • 2
  • Wenxiong Lin
    • 1
    • 2
  1. 1.Key Laboratory of Biopesticide and Chemical BiologyFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.School of Life SciencesFAFUFuzhouChina

Personalised recommendations