Journal of Chemical Ecology

, Volume 34, Issue 4, pp 478–486

(E,E)-α-Farnesene, an Alarm Pheromone of the Termite Prorhinotermes canalifrons

  • Jan Šobotník
  • Robert Hanus
  • Blanka Kalinová
  • Rafal Piskorski
  • Josef Cvačka
  • Thomas Bourguignon
  • Yves Roisin
Article

Abstract

The behavioral and electroantennographic responses of Prorhinotermes canalifrons to its soldier frontal gland secretion, and two separated major components of the secretion, (E)-1-nitropentadec-1-ene and (E,E)-α-farnesene, were studied in laboratory experiments. Behavioral experiments showed that both the frontal gland secretion and (E,E)-α-farnesene triggered alarm reactions in P. canalifrons, whereas (E)-1-nitropentadec-1-ene did not affect the behavior of termite groups. The alarm reactions were characterized by rapid walking of activated termites and efforts to alert and activate other members of the group. Behavioral responses to alarm pheromone differed between homogeneous and mixed groups, suggesting complex interactions. Antennae of both soldiers and pseudergates were sensitive to the frontal gland secretion and to (E,E)-α-farnesene, but soldiers showed stronger responses. The dose responses to (E,E)-α-farnesene were identical for both soldiers and pseudergates, suggesting that both castes use similar receptors to perceive (E,E)-α-farnesene. Our data confirm (E,E)-α-farnesene as an alarm pheromone of P. canalifrons.

Keywords

Alarm behavior Alarm pheromone (E,E)-α-farnesene Chemical communication Termites EAG Isoptera Rhinotermitidae 

References

  1. Al Abassi, S., Birkett, M. A., Pattersson, J., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 2000. Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor is mediated by paired olfactory cells. J. Chem. Ecol. 26:1765–1771.CrossRefGoogle Scholar
  2. Attygalle, A. B., and Morgan, E. D. 1983. Trail pheromone of the ant Tetramorium caespitum L. Naturwissenschaften 70:364–365.CrossRefGoogle Scholar
  3. Bacchus, S. 1979. New exocrine gland on the legs of some Rhinotermitidae (Isoptera). Int. J. Insect Morphol. Embryol. 8:135–142.CrossRefGoogle Scholar
  4. Bordereau, C., Robert, A., Bonnard, O., and Le Quéré, J.-L. 1991. (3Z,6Z,8E)-3,6,8-dodecatrien-1-ol: sex pheromone in a higher fungus-growing termite, Pseudacanthotermes spiniger (Isoptera, Macrotermitinae). J. Chem. Ecol. 17:2177–2191.CrossRefGoogle Scholar
  5. Bordereau, C., Cancello, E. M., Sémon, E., Courrent, A., and Quennedey ,, B. 2002. Sex pheromone identified after solid phase microextraction from tergal glands of female alates in Cornitermes bequaerti (Isoptera, Nasutitermitinae). Insect. Soc. 49:209–215.CrossRefGoogle Scholar
  6. Cammaerts, M.–C. 1973. Aggregation pheromones of the workers of Myrmica rubra. J. Insect Physiol. 19:299–1315.CrossRefGoogle Scholar
  7. Cassier, P., Fain-Maurel, M. A., and Lebrun, D. 1977. Electron microscopic study of the mandibular glands of Kalotermes flavicollis Fabr. (Isoptera; Calotermitidae). Cell Tiss. Res. 182:327–339.CrossRefGoogle Scholar
  8. Clément, J.–L., and Bagnères, A.–G. 1998. Nestmate recognition in termites, pp. 126–155, in R. K. Van der Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.). Pheromone Communication in Social Insects: Ants, Wasps, Bees and TermitesWestview, Boulder.Google Scholar
  9. Connétable, S., Robert, A., Bouffault, F., and Bordereau, C. 1999. Vibratory alarm signals in two sympatric higher termite species: Pseudacanthotermes spiniger and P. militaris (Termitidae, Macrotermitinae). J. Insect Behav. 12:329–342.CrossRefGoogle Scholar
  10. Costa-Leonardo, A. M., and Kitayama, K. 1991. Frontal gland dehiscence in the Brazilian termite Serritermes serrifer (Isoptera: Serritermitidae). Sociobiology 19:333–338.Google Scholar
  11. Dawson, G. W., Griffiths, D. C., Merritt, L. A., Mudd, A., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1990. Aphid semiochemicals—a review, and recent advances on the sex-pheromone. J. Chem. Ecol. 16:3019–3030.CrossRefGoogle Scholar
  12. Deligne, J., Quennedey, A., and Blum, M. S. 1981. The enemies and defense mechanisms of termites, pp. 1–76, in H. R. Hermann (ed.). Social Insects, Vol. 2. Academic Press, New York.Google Scholar
  13. Detrain, C., Pasteels, J. M., Braekman, J. C., and Daloze, D. 1987. (Z,E)-alpha-farnesene, main constituent of the hypertrophied Dufour’s gland of the major workers of Pheidole pallidula (Formicidae). Experientia 43:345–346.CrossRefGoogle Scholar
  14. Francis, F., Lognay, G., and Haubruge, E. 2004. Olfactory responses to aphid and host plant volatile releases: (E)-β-farnesene, an effective kairomone for the predator Adalia bipunctata. J. Chem. Ecol. 30:741–755.PubMedCrossRefGoogle Scholar
  15. Hanus, R., Šobotník, J., and Cizek ,, L. 2005. Egg care by termite soldiers. Insect. Soc. 52:357–359.CrossRefGoogle Scholar
  16. Hanus, R., Šobotník, J., Valterová, I., and Lukáš ,, J. 2006. The ontogeny of soldiers in Prorhinotermes simplex (Isoptera, Rhinotermitidae). Insect. Soc. 53:249–257.CrossRefGoogle Scholar
  17. Haverty, M. I. 1977. The proportion of soldiers in termite colonies: a list and a bibliography (Isoptera). Sociobiology 2:199–216.Google Scholar
  18. Howse, P. E. 1964. The significance of the sound produced by the termite Zootermopsis angusticollis (Hagen). Animal Behav. 12:284–300.CrossRefGoogle Scholar
  19. Howse, P. E. 1965. On the significance of certain oscillatory movements of termites. Insect. Soc. 12:335–346.CrossRefGoogle Scholar
  20. Kaib, M. 1990. Intra- and interspecific chemical signals in the termite Schedorhinotermes - production sites, chemistry, and behaviour, pp. 26–32, in F. G. Gribakin, K. Wiese, and A. V. Popov (eds.). Sensory Systems and Communication in Arthropods. Birkhäuser, Basel.Google Scholar
  21. Kuldová, J., Hrdý, I., and Svatoš, A. 1999. Defense secretion of Prorhinotermes simplex: toxicity to insecticide susceptible and resistant house fly. J. Chem. Ecol. 25:657–662.CrossRefGoogle Scholar
  22. Kriston, M. I., Watson, J. A. L., and Eisner, T. 1977. Non-combative behaviour of large soldiers of Nasutitermes exitiosus (Hill): an analytical study. Insect. Soc. 24:103–111.CrossRefGoogle Scholar
  23. Laduguie, N., Robert, A., Bonnard, O., Vieau, F., Le Quéré, J.-L., Semon, E., and Bordereau, C. 1994. Isolation and identification of (3Z,6Z,8E)-3,6,8-dodecatrien-1-ol in Reticulitermes santonensis Feytaud (Isoptera, Rhinotermitidae): roles in worker trail-following and in alate sex-attraction behaviour. J. Insect Physiol. 40:781–787.CrossRefGoogle Scholar
  24. Maschwitz, U., and Mühlenberg, M. 1972. Chemische Gefahrenalarmierung bei einer Termite. Naturwissenschaften 59:516–517.CrossRefGoogle Scholar
  25. Matsumura, F., Coppel, H. C., and Tai, A. 1968. Isolation and identification of termite trail following pheromone. Nature 219:963–964.PubMedCrossRefGoogle Scholar
  26. McDowell, P. G., and Oloo, G. W. 1984. Isolation, identification, and biological activity of trail-following pheromone of termite Trinervitermes bettonianus (Sjöstedt) (Termitidae: Nasutitermitinae). J. Chem. Ecol. 10:835–851.CrossRefGoogle Scholar
  27. Noirot, C. 1969. Glands and Secretions, pp. 89–123, in K. Krishna, and F. M. Weesner (eds.). Biology of Termites, Vol. 1. Academic, New York.Google Scholar
  28. Pasteels, J. M., and Bordereau, C. 1998. Releaser pheromones in termites, pp. 193–215, in R. K. Van der Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.). Pheromone Communication in Social Insects: Ants, Wasps, Bees and Termites. Westview, Boulder.Google Scholar
  29. Peppuy, A., Robert, A., Semon, E., Ginies, C., Lettere, M., Bonnard, O., and Bordereau, C. 2001. (Z)-dodec-3-en-1-ol, a novel termite trail pheromone identified after solid phase microextraction from Macrotermes annandalei. J. Insect Physiol. 47:445–453.PubMedCrossRefGoogle Scholar
  30. Peppuy, A., Robert, A., and Bordereau, C. 2004. Species-specific sex pheromones secreted from new sexual glands in two sympatric fungus-growing termites from northern Vietnam, Macrotermes annandalei and M. barneyi. Insect. Soc. 51:91–98.CrossRefGoogle Scholar
  31. Piskorski, R., Hanus, R., Vašíčková, S., Cvačka, J., Šobotník, J., Svatoš, A., and Valterová, I. 2007. Nitroalkenes and sesquiterpene hydrocarbons from the frontal gland secretion of three Prorhinotermes termite species. J. Chem. Ecol. 33:1787–1794.PubMedCrossRefGoogle Scholar
  32. Quennedey, A., and Deligne, J. 1975. L´arme frontale des soldats de termites (Rhinotermitidae). Insect. Soc. 22:243–267.CrossRefGoogle Scholar
  33. Quintana, A., Reinhard, J., Faure, R., Uva, P., Bagnères, A.-G., Massiot, G., and Clément, J.-L. 2003. Interspecific variation in terpenoid composition of defensive secretions of European Reticulitermes termites. J. Chem. Ecol. 29:639–652.PubMedCrossRefGoogle Scholar
  34. Reinhard, J., and Clément, J. -L. 2002. Alarm reaction of European Reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J. Insect Behav. 15:95–107.CrossRefGoogle Scholar
  35. Reinhard, J., Lacey, M. J., Ibarra, F., Schroeder, F. C., Kaib, M., and Lenz, M. 2002. Hydroquinone: a general phagostimulating pheromone in termites. J. Chem. Ecol. 28:1–14.PubMedCrossRefGoogle Scholar
  36. Roisin, Y. 1988. Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera). Zoomorphology 107:339–347.CrossRefGoogle Scholar
  37. Roisin, Y., Everaerts, C., Pasteels, J. M., and Bonnard, O. 1990. Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone in Nasutitermes princeps. J. Chem. Ecol. 16:2865–2875.CrossRefGoogle Scholar
  38. Roisin, Y., Pearcy, M., and Rupf, T. 2001. Foraging behaviour and nest moving in Prorhinotermes inopinatus (Rhinotermitidae), a termite without workers. Proc. Eur. Congress IUSSI, Berlin, p. 178.Google Scholar
  39. Röhrig, A., Kirchner, W. H., and Leuthold, R. H. 1999. Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insect. Soc. 46:71–77.CrossRefGoogle Scholar
  40. Shelton, T. G., and Grace, J. K. 1996. Review of agonistic behaviors in the Isoptera. Sociobiology 28:155−176.Google Scholar
  41. Šobotník, J., and Hubert, J. 2003. The morphology of the exocrine glands of Prorhinotermes simplex (Isoptera: Rhinotermitidae) and their ontogenetical aspects. Acta Soc. Zool. Bohem. 67:83–98.Google Scholar
  42. Šobotník, J., Weyda, F., and Hanus, R. 2003. Ultrastructure of epidermal glands in neotenic reproductives of the termite Prorhinotermes simplex (Isoptera: Rhinotermitidae). Arthropod Struct. Devel. 32:201–208.CrossRefGoogle Scholar
  43. Thorne, B. L., and Haverty, M. I. 1991. A review of intracolony, intraspecific, and interspecific agonism in termites. Sociobiology 19:115−145.Google Scholar
  44. Traniello, J. F. A., Prestwich, G. D., and Thorne, B. L. 1984. Chemical composition and efficacy of cephalic gland secretion of Armitermes chagresi (Isoptera: Termitidae). J. Chem. Ecol. 10:531–543.CrossRefGoogle Scholar
  45. Vander Meer, R. K. 1983. Semiochemicals and the red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae). Florida Entomol. 66:139–161.CrossRefGoogle Scholar
  46. Vrkoč, J., and Ubik, K. 1974. 1-Nitro-trans-1-pentadecene as the defensive compound of termites. Tetrahedron Lett. 15:1463–1464.CrossRefGoogle Scholar
  47. Vrkoč, J., Křeček, J., and Hrdý, I. 1978. Monoterpenic alarm pheromones in two Nasutitermes species. Acta Entom. Bohemoslov. 75:1–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jan Šobotník
    • 1
    • 2
  • Robert Hanus
    • 1
  • Blanka Kalinová
    • 1
  • Rafal Piskorski
    • 1
  • Josef Cvačka
    • 1
  • Thomas Bourguignon
    • 2
  • Yves Roisin
    • 2
  1. 1.Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences, v.v.i.Praha 6Czech Republic
  2. 2.Behavioural and Evolutionary EcologyUniversité Libre de Bruxelles-CP 160/12BrusselsBelgium

Personalised recommendations