Journal of Chemical Ecology

, Volume 34, Issue 2, pp 189–197 | Cite as

Enantiomeric Specificity in a Pheromone–Kairomone System of Two Threatened Saproxylic Beetles, Osmoderma eremita and Elater ferrugineus

  • Glenn P. SvenssonEmail author
  • Mattias C. Larsson


The scarab beetle Osmoderma eremita and its larval predator, the click beetle Elater ferrugineus, are threatened saproxylic beetles regarded as indicators of the species-richness of insect fauna of hollow deciduous trees. Male O. eremita produce the pheromone (R)-(+)-γ-decalactone to attract conspecific females, and this compound is also utilized by E. ferrugineus as a kairomone, presumably for detection of tree hollows containing prey. We have investigated enantiomeric specificity to γ-decalactone in this pheromone–kairomone system by electrophysiological and field trapping experiments. In single-sensillum recordings from male and female O. eremita, which used the (R)-enantiomer and the racemic mixture of γ-decalactone as odor stimuli, numerous olfactory receptor neurons (ORNs) responding to both stimuli were found. No neurons responded preferentially to the racemic mixture, showing that these beetles seem to lack receptors specific for the (S)-enantiomer. The enantiomeric specificity of ORNs was confirmed by gas chromatography-linked single-sensillum recordings where the two enantiomers in a racemic mixture were separated on a chiral column. Furthermore, in field experiments that used the (R)-enantiomer and the racemic mixture as lures, the attraction of O. eremita females corresponded to the amount of (R)-enantiomer released from lures with the (S)-enantiomer displaying no antagonistic effects. Trap catch data also suggested that the (S)-enantiomer is not a behavioral antagonist for E. ferrugineus. The odor-based system can be highly efficient in attracting the larval predator where trap catch in 1 yr almost equaled the total number of specimens collected in Sweden until 1993. Our study shows that racemic γ-decalactone could be used for cost-effective monitoring of both beetles.


Osmoderma eremita Elater ferrugineus Scarabaeidae Elateridae γ-Decalactone Sex pheromone Kairomone Predator–prey interaction Single-sensillum recording Olfactory receptor neuron Conservation 



We thank Björn Brage, Marie Garstad, Therese Lindström, and Niclas Berg for the field assistance, and Fredrik Schlyter for lending the Lindgren funnel traps. This project was supported by Stiftelsen Eklandskapet i Linköpings kommun, Lunds Djurskyddsfond, Bjärka-Säby stiftelsen, and the Magnus Bergvall Foundation.


  1. Aldrich, J. R. 1999. Predators, pp. 357–381, in J. Hardie, and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. Wallingford, UK, CAB International.Google Scholar
  2. Anonymous 1992. Directive 92/43 of the Council of the European Community on the conservation of habitats and wild fauna and flora. European Community, Brussels.Google Scholar
  3. Antonsson, K., Hedin, J., Jansson, N., Nilsson, S. G., and Ranius, T. 2003. Occurrence of the hermit beetle (Osmoderma eremita) in Sweden. Entomol. Tidskr 124:225–240 (In Swedish, English summary).Google Scholar
  4. Birch, M. C., Light, D. M., Wood, D. L., Browne, L. E., Silverstein, R. M., Bergot, B. J., Ohloff, G., West, J. R., and Young, J. C. 1980. Pheromonal attraction and allomonal interruption of Ips pini in California by the two enantiomers of ipsdienol. J. Chem. Ecol 6:703–717.CrossRefGoogle Scholar
  5. Borden, J. H. 1997. Disruption of semiochemical-mediated aggregation in bark beetles, pp. 421–438, in R. T. Cardé, and A. K. Minks (eds.). Insect Pheromone Research: New Directions. New York, Chapman and Hall.Google Scholar
  6. Butenandt, A., Beckmann, R., Stamm, D., and Hecker, E. 1959. Über den Sexual-Lockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z. Naturforsch 14b:283–284.Google Scholar
  7. Cardé, R. T., and Minks, A. K. 1995. Control of moth pests by mating disruption: successes and constraints. Annu. Rev. Entomol 40:559–585.CrossRefGoogle Scholar
  8. Dajoz, R. 2000. Insects and Forests. pp. 515–533. Intercept Publishing, UK.Google Scholar
  9. Foster, S. P., and Harris, M. O. 1997. Behavioral manipulation methods for insect pest-management. Annu. Rev. Entomol 42:123–146.PubMedCrossRefGoogle Scholar
  10. Gärdenfors, U. (ed.) 2005. Rödlistade arter i Sverige 2005—The 2005 Red List of Swedish Species. ArtDatabanken, Uppsala, Sweden.Google Scholar
  11. Hannah, L., Carr, J. L., and Lankerani, A. 1995. Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers. Conserv 4:128–155.CrossRefGoogle Scholar
  12. Hansen, V. 1966. Danmarks Fauna, Biller XXIII, Smældere of Pragtbiller, Gads Forlag, København, pp. 36–37 (In Danish).Google Scholar
  13. Hedin, J. and Mellbrand, K. 2003. Population size of the threatened beetle Osmoderma eremita in relation to habitat quality, in J. Hedin (ed.). Metapopulation ecology of Osmoderma eremita—dispersal, habitat quality and habitat history. Ph.D. dissertation. Lund University, Lund, Sweden.Google Scholar
  14. Hillbur, Y., Bengtsson, M., Löfqvist, J., Biddle, A., Pilon, O., Plass, E., Francke, W., and Hallberg, E. 2001. A chiral sex pheromone system in the pea midge, Contarinia pisi. J. Chem. Ecol 27:1391–1407.PubMedCrossRefGoogle Scholar
  15. Lacey, E. S., Ginzel, M. D., Millar, J. G., and Hanks, L. M. 2004. Male-produced aggregation pheromone of the cerambycid beetle Neoclytus acuminatus acuminatus. J. Chem. Ecol 30:1493–1507.PubMedCrossRefGoogle Scholar
  16. Larsson, M. C., and Hansson, B. S. 1998. Receptor neuron responses to potential sex pheromone components in the caddisfly Rhyacophila nubila (Trichoptera: Rhyacophilidae). J. Insect. Physiol 44:189–196.PubMedCrossRefGoogle Scholar
  17. Larsson, M. C., Leal, W. S., and Hansson, B. S. 1999. Olfactory receptor neurons specific to chiral sex pheromone components in male and female Anomala cuprea beetles (Coleoptera: Scarabaeidae). J. Comp. Physiol 184:353–359.CrossRefGoogle Scholar
  18. Larsson, M. C., Leal, W. S., and Hansson, B. S. 2001. Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). J. Insect Physiol 47:1065–1076.PubMedCrossRefGoogle Scholar
  19. Larsson, M. C., Hallberg, E., Kozlov, M. V., Francke, W., Hansson, B. S., and Löfstedt, C. 2002. Specialized olfactory receptor neurons mediating intra- and interspecific chemical communication in leafminer moths Eriocrania spp. (Lepidoptera: Eriocraniidae) . J. Exp. Biol 205:989–998.PubMedGoogle Scholar
  20. Larsson, M. C., Hedin, J., Svensson, G. P., Tolasch, T., and Francke, W. 2003. Characteristic odor of Osmoderma eremita identified as a male-released pheromone. J. Chem. Ecol 29:575–587.PubMedCrossRefGoogle Scholar
  21. Leal, W. S. 1991. (R,Z)-5-(−)-(Oct-1-enyl)oxacyclopentan-2-one, the sex pheromone of the scarab beetle Anomala cuprea. Naturwissenschaften 78:521–523.CrossRefGoogle Scholar
  22. Leal, W. S. 1996. Chemical communication in scarab beetles: reciprocal behavioral agonist–antagonist activities of chiral pheromones. Proc. Natl. Acad. Sci. U. S. A 93:12112–12115.PubMedCrossRefGoogle Scholar
  23. Leal, W. S. 1999. Enantiomeric anosmia in scarab beetles. J. Chem. Ecol 25:1055–1066.CrossRefGoogle Scholar
  24. Levinson, A., and Levinson, H. 1999. Inhibition of sexual attraction and mating by pheromone enantiomers in male Lasioderma serricorne. Naturwissenschaften 86:138–140.CrossRefGoogle Scholar
  25. Luce, J. -M. 1996. Osmoderma eremita (Scopoli 1763), pp. 64–69, in P. J. van Helsdingen, L. Willemse, and M. C. D. Speight (eds.). Background Information on Invertebrates of the Habitats Directive and the Bern Convention. Part 1: Crustacea, Coleoptera, and Lepidoptera. Council of Europe, Strasbourg.Google Scholar
  26. Mori, K. 1998. Chirality and insect pheromones. Chirality 10:578–586.CrossRefGoogle Scholar
  27. Mori, M., Mochizuki, K., Kohno, M., Chuman, T., Ohnishi, A., Watanabe, H., and Mori, K. 1986. Inhibitory action of (4S, 6S, 7R)-isomer to pheromonal activity of serricornin, (4S, 6S, 7S)-7-hydroxy-4,6-dimethyl-3-nonanone. J. Chem. Ecol 12:83–89.CrossRefGoogle Scholar
  28. Nilsson, S. G., and Baranowski, R. 1994. Indicators of megatree continuity—Swedish distribution of click beetles (Coleoptera, Elateridae) dependent on hollow trees. Entomol. Tidskr 115:81–97 (In Swedish, English summary).Google Scholar
  29. Okada, K., Watanabe, A., Mori, M., Shimazaki, K., Chuman, T., Mochizuki, F., and Shibuya, T. 1992. Olfactory responses to the sex pheromone component and its behavioral inhibitor in the male cigarette beetle, Lasioderma serricorne. J. Insect. Physiol 38:705–709.CrossRefGoogle Scholar
  30. Palm, T. 1959. Die Holz- und Rinden-Käfer der Süd- und Mittelschwedishen Laubbäume. Lund: Opuscula Entomologica supplementum XVI (In German, English summary).Google Scholar
  31. Payne, T. L., Richerson, J. V., Dickens, J. C., West, J. R., Mori, K., Berisford, C. W., Hedden, R. L., Vité, J. P., and Blum, M. S. 1982. Southern pine beetle: Olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin. J. Chem. Ecol 8:873–881.CrossRefGoogle Scholar
  32. Payne, T. L., Dickens, J. C., and Richerson, J. V. 1984. Insect predator–prey coevolution via enantiomeric specificity in a kairomone–pheromone system. J. Chem. Ecol 10:487–492.CrossRefGoogle Scholar
  33. Ranius, T. 2001. Constancy and asynchrony of Osmoderma eremita populations in tree hollows. Oecologia 126:208–215.CrossRefGoogle Scholar
  34. Ranius, T. 2002. Osmoderma eremita as an indicator of species richness of beetles in tree hollows. Biodivers. Conserv 11:931–941.CrossRefGoogle Scholar
  35. Ranius, T., and Hedin, J. 2001. The dispersal rate of a beetle, Osmoderma eremita, living in tree hollows. Oecologia 126:363–370.CrossRefGoogle Scholar
  36. Ranius, T., and Nilsson, S. G. 1997. Habitat of Osmoderma eremita Scop. (Coleoptera: Scarabaeidae), a beetle living in hollow trees. J. Insect Conserv 1:193–204.CrossRefGoogle Scholar
  37. Ranius, T., Aguado, L. O., Antonsson, K., Audisio, P., Ballerio, A., Carpaneto, G. M., Chobot, K., Gjurasin, B., Hanssen, O., Huijbregts, H., Lakatos, F., Martin, O., Neculiseanu, Z., Nikitsky, N. B., Paill, W., Pirnat, A., Rizun, V., Ruicnescu, A., Stegner, J., Süda, I., Szwako, P., Tamutis, V., Telnov, D., Tsinkevich, V., Versteirt, V., Vignon, V., Vögeli, M., and Zach, P. 2005. Osmoderma eremita (Coleoptera, Scarabaeidae, Cetoniidae) in Europe. Anim. Biodivers. Conserv 28:1–44.Google Scholar
  38. Ruther, J., Reinecke, A., Thiemann, K., Tolasch, T., Francke, W., and Hilker, M. 2000. Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol. Entomol 25:172–179.CrossRefGoogle Scholar
  39. Svensson, G. P., Larsson, M. C., and Hedin, J. 2003. Air sampling of its pheromone to monitor the occurrence of Osmoderma eremita, a threatened beetle inhabiting hollow trees. J. Insect Conserv 7:189–198.CrossRefGoogle Scholar
  40. Svensson, G. P., Larsson, M. C., and Hedin, J. 2004. Attraction of the larval predator Elater ferrugineus to the sex pheromone of its prey, Osmoderma eremita, and its implication for conservation biology. J. Chem. Ecol 30:353–363.PubMedCrossRefGoogle Scholar
  41. Szöcs, G., Tóth, M., Francke, W., Schmidt, F., Phillip, P., König, W. A., Mori, K., Hansson, B. S., and Löfstedt, C. 1993. Species discrimination in five species of winter-flying Geometrids (Lepidoptera) based on chirality of semiochemicals and flight season. J. Chem. Ecol 19:2721–2735.CrossRefGoogle Scholar
  42. Tolasch, T., Sölter, S., Tóth, M., Ruther, J., and Francke, W. 2003. (R)-acetoin—female sex pheromone of the summer chafer Amphimallon solstitiale (L.). J. Chem. Ecol 29:1045–1050.PubMedCrossRefGoogle Scholar
  43. Tolasch, T., von Vragstein, M., and Steidle, J. L. M. 2007. Sex pheromone of Elater ferrugineus L. (Coleoptera: Elateridae). J. Chem. Ecol 33:2156–2166.PubMedCrossRefGoogle Scholar
  44. Tumlinson, J. H., Klein, M. G., Doolittle, R. E., Ladd, T. L., and Proveaux, A. T. 1977. Identification of the female Japanese beetle sex pheromone: inhibition of male response by an enantiomer. Science 197:789–792.PubMedCrossRefGoogle Scholar
  45. Wojtasek, H., Hansson, B. S., and Leal, W. S. 1998. Attracted or repelled?—A matter of two neurons, one pheromone binding protein, and a chiral center. Biochem. Biophys. Res. Commun 250:217–222.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Ecology, Ecology BuildingLund UniversityLundSweden
  2. 2.Department of Crop Protection BiologySwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations