Advertisement

Journal of Chemical Ecology

, Volume 34, Issue 1, pp 57–64 | Cite as

Variation of Phlorotannins Among Three Populations of Fucus vesiculosus as Revealed by HPLC and Colorimetric Quantification

  • R. KoivikkoEmail author
  • J. K. Eränen
  • J. Loponen
  • V. Jormalainen
Article

Abstract

In ecological studies, phlorotannins have conventionally been quantified as a group with similar functionality. Since this group consists of oligo- and polymers, the quantification of their pooled contents alone may not sufficiently describe the variation of these metabolites. Genetic variation, plastic responses to environment, and the ecological functions of separate phlorotannin oligo- and polymers may differ. Two analyses, i.e., the colorimetric Folin–Ciocalteu assay and a normal-phase high-performance liquid chromatographic (HPLC) method were used to study genetic and environmental variation in phlorotannins of the brown alga Fucus vesiculosus (L.). The colorimetric method provides the total phlorotannin content, the latter a profile of 14 separate traces from the phenolic extract that represent an individual or groups of phlorotannins. We reared the algae that originated from three separate populations in a common garden for 3 months under ambient and enriched-nutrient availability and found that they differed in both their total phlorotannin content and in phlorotannin profiles. Some individual traces of the profiles separated the populations more clearly than the colorimetric assay. Although nutrient enrichment decreased total phlorotannin content, it did not show a significant influence on the phlorotannin profile. This implies that plastic responses of compounds other than phlorotannins may interfere with the determination of total phlorotannins. However, the phlorotannin profile and the total content showed genetic variation among local populations of F. vesiculosus; therefore, phlorotannins may respond to natural selection and evolve both quantitatively and qualitatively.

Keywords

Brown algae Common garden Folin–Ciocalteu High-performance liquid chromatography Phenolic compounds 

Notes

Acknowledgements

For financial support, we are grateful to the Academy of Finland (project no. 53832 and research fellowship to VJ) and the Maj and Tor Nessling foundation. We thank T. Honkanen, M. Lindqvist, and O. Vesakoski for their help in the work. K. O’Brien kindly checked the language.

References

  1. Adamson, G. E., Lazarus, S. A., Mitchell, A. E., Prior, R. L., Cao, G. H., Jacobs, P. H., Kremers, B. G., Hammerstone, J. F., ucker, R. B., itter, K. A., and Schmitz, H. H. 1999. HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J. Agric. Food Chem 47:4184–4188.PubMedCrossRefGoogle Scholar
  2. Amsler, C. D., and Fairhead, V. A. 2006. Defensive and sensory chemical ecology of brown algae. Adv. Bot. Res 43:1–91.CrossRefGoogle Scholar
  3. Arnold, T. M., and Targett, N. M. 2000. Evidence for metabolic turnover of polyphenolics in tropical brown algae. J. Chem. Ecol 26:1393–1410.CrossRefGoogle Scholar
  4. Bergström, L., Tatarenkov, A., Johannesson, K., Jonsson, R. B., and Kautsky, L. 2005. Genetic and morphological identification of Fucus radicans sp Nov (Fucales, Phaeophyceae) in the brackish Baltic Sea. J. Phycol 41:1025–1038.CrossRefGoogle Scholar
  5. Boettcher, A. A., and Targett, N. M. 1993. Role of polyphenolic molecular-size in reduction of assimilation efficiency in Xiphister mucosus. Ecology 74:891–903.CrossRefGoogle Scholar
  6. Chapman, A. R. O. 1995. Functional ecology of fucoid algae–23 years of progress. Phycologia 34:1–32.Google Scholar
  7. Coyer, J. A., Peters, A. F., Stam, W. T., and Olsen, J. L. 2003. Post-ice age recolonization and differentiation of Fucus serratus L. (Phaeophyceae; Fucaceae) populations in Northern Europe. Mol. Ecol 12:1817–1829.PubMedCrossRefGoogle Scholar
  8. Cronin, G. 2001. Resource allocation in seaweeds and marine invertebrates. Marine Chemical Ecology. pp. 325–353, in J. B. McClintock, and B. J. Baker (eds.). CRC Press, Boca Raton, FL.Google Scholar
  9. Cronin, G., and Hay, M. E. 1996. Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 77:93–106.CrossRefGoogle Scholar
  10. Gurevitch, J., and Hedges, L. V. 2001. Meta-analysis - combining the results of independent experimentsDesign and Analysis of Ecological Experiments. pp. 347–369, in S. M. Scheiner, and J. Gurevitch (eds.). Oxford University Press, New York.Google Scholar
  11. Hänninen, J., Vuorinen, I., Helminen, H., Kirkkala, T., and Lehtilä, K. 2000. Trends and gradients in nutrient concentrations and loading in the Archipelago Sea, Northern Baltic, in 1970–1997. Estuar. Coast. Shelf S 50:153–171.CrossRefGoogle Scholar
  12. Hemmi, A., Honkanen, T., and Jormalainen, V. 2004. Inducible resistance to herbivory in Fucus vesiculosus - duration, spreading and variation with nutrient availability. Mar. Ecol. Prog. Ser 273:109–120.CrossRefGoogle Scholar
  13. Hemmi, A., and Jormalainen, V. 2004a. Genetic and environmental variation in performance of a marine isopod: Effects of eutrophication. Oecologia 140:302–311.PubMedCrossRefGoogle Scholar
  14. Hemmi, A., and Jormalainen, V. 2004b. Geographic covariation of chemical quality of the host alga Fucus vesiculosus with fitness of the herbivorous isopod Idotea baltica. Mar. Biol 145:759–768.Google Scholar
  15. Honkanen, T., and Jormalainen, V. 2002. Within-alga integration and compensation: Effects of simulated herbivory on growth and reproduction of the brown alga, Fucus vesiculosus. Int. J. Plant Sci 163:815–823.CrossRefGoogle Scholar
  16. Honkanen, T., and Jormalainen, V. 2005. Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus. Oecologia 144:196–205.PubMedCrossRefGoogle Scholar
  17. Honkanen, T., Jormalainen, V., Hemmi, A., Mäkinen, A., and Heikkilä, N. 2002. Feeding and growth of the isopod Idotea baltica on the brown alga Fucus vesiculosus: Roles of inter-population and within-plant variation in plant quality. Ecoscience 9:332–338.Google Scholar
  18. Jormalainen, V., and Honkanen, T. 2004. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. J. Evol. Biol 17:807–820.PubMedCrossRefGoogle Scholar
  19. Jormalainen, V., and Honkanen, T. 2008. Macroalgal chemical defenses and their roles in structuring temperate marine communities. Algal Chemical Ecology. pp. 57–89, in C. D. Amsler (ed.). Springer, Berlin.CrossRefGoogle Scholar
  20. Jormalainen, V., Honkanen, T., Koivikko, R., and Eränen, J. 2003. Induction of phlorotannin production in a brown alga: defense or resource dynamics? Oikos 103:640–650.CrossRefGoogle Scholar
  21. Koivikko, R., Loponen, J., Honkanen, T., and Jormalainen, V. 2005. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol 31:195–212.PubMedCrossRefGoogle Scholar
  22. Koivikko, R., Loponen, J., Pihlaja, K., and Jormalainen, V. 2007. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem. Anal 18:326–332.PubMedCrossRefGoogle Scholar
  23. Koricheva, J., Larsson, S., Haukioja, E., and Keinänen, M. 1998. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–226.CrossRefGoogle Scholar
  24. Korpinen, S., Jormalainen, V., and Honkanen, T. 2007. Effects of nutrients, herbivory, and depth on the macroalgal community in the rocky sublittoral. Ecology 88:839–852.PubMedCrossRefGoogle Scholar
  25. Krebs, C. J. 1999. Ecological Methodology. pp. 554–559. Addison-Wesley Longman, California, USA.Google Scholar
  26. Lazarus, S. A., Adamson, G. E., Hammerstone, J. F., and Schmitz, H. H. 1999. High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in foods and beverages. J. Agric. Food Chem 47:3693–3701.PubMedCrossRefGoogle Scholar
  27. Pavia, H., and Toth, G. 2008. Macroalgal models in testing and extending defense theories. Algal Chemical Ecology. pp. 147–172, in C. D. Amsler (ed.). Springer, Berlin.CrossRefGoogle Scholar
  28. Pavia, H., and Toth, G. B. 2000. Influence of light and nitrogen on the phlorotannin content of the brown seaweeds Ascophyllum nodosum and Fucus vesiculosus. Hydrobiologia 440:299–305.CrossRefGoogle Scholar
  29. Pavia, H., Toth, G. B., Lindgren, A., and Åberg, P. 2003. Intraspecific variation in the phlorotannin content of the brown alga Ascophyllum nodosum. Phycologia 42:378–383.CrossRefGoogle Scholar
  30. Pavia, H., Toth, G., Åberg, P. 1999. Trade-offs between phlorotannin production and annual growth in natural populations of the brown seaweed Ascophyllum nodosum. J. Ecol. 87:761–771.CrossRefGoogle Scholar
  31. Peckol, P., Krane, J. M., and Yates, J. L. 1996. Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar. Ecol. Prog. Ser 138:209–217.CrossRefGoogle Scholar
  32. Ragan, M. A., and Glombitza, K. W. 1986. Phlorotannins, brown algal polyphenols. Progress in Phycological Research. pp. 129–241, in F. E. Round, and D. J. Chapman (eds.). Biopress Ltd, Bristol.Google Scholar
  33. SAS Institute 1999. SAS/STAT User’s Guide, Version 8. SAS Institute Inc., Cary, NC, USA.Google Scholar
  34. Steinberg, P. D. 1989. Biogeographical variation in brown algal polyphenolics and other secondary metabolites—Comparison between temperate Australasia and North-America. Oecologia 78:373–382.CrossRefGoogle Scholar
  35. Stern, J. L., Hagerman, A. E., Steinberg, P. D., Winter, F. C., and Estes, J. A. 1996. A new assay for quantifying brown algal phlorotannins and comparisons to previous methods. J. Chem. Ecol 22:1273–1293.CrossRefGoogle Scholar
  36. Svensson, C. J., Pavia, H., and Toth, G. B. 2007. Do plant density, nutrient availability, and herbivore grazing interact to affect phlorotannin plasticity in the brown seaweed Ascophyllum nodosum. Mar. Biol 151:2177–2181.CrossRefGoogle Scholar
  37. Targett, N. M., and Arnold, T. M. 1998. Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol 34:195–205.CrossRefGoogle Scholar
  38. Targett, N. M., and Arnold, T. M. 2001. Effects of secondary metabolites on digestion in marine herbivores. Marine Chemical Ecology. pp. 391–412, in J. B. McClintock, and B. J. Baker (eds.). CRC Press, Boca Raton, FL.Google Scholar
  39. Tatarenkov, A., Jonsson, R. B., Kautsky, L., and Johannesson, K. 2007. Genetic structure in populations of Fucus vesiculosus (Phaeophyceae) over spatial scales from 10 m to 800 km. J. Phycol 43:675–685.CrossRefGoogle Scholar
  40. Van Alstyne, K. L. 1995. Comparison of 3 methods for quantifying brown algal polyphenolic compounds. J. Chem. Ecol 21:45–58.CrossRefGoogle Scholar
  41. Waterman, P. G., and Mole, S. 1994. Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Oxford, Great Britain.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. Koivikko
    • 1
    • 2
    Email author
  • J. K. Eränen
    • 1
  • J. Loponen
    • 2
  • V. Jormalainen
    • 1
  1. 1.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.The Laboratory of Organic Chemistry and Chemical Biology, Department of ChemistryUniversity of TurkuTurkuFinland

Personalised recommendations