Journal of Chemical Ecology

, Volume 34, Issue 1, pp 82–93 | Cite as

An Antiaphrodisiac in Heliconius melpomene Butterflies

  • Stefan SchulzEmail author
  • Catalina Estrada
  • Selma Yildizhan
  • Michael Boppré
  • Lawrence E. Gilbert


Gilbert (1976) suggested that male-contributed odors of mated females of Heliconius erato could enforce monogamy. We investigated the pheromone system of a relative, Heliconius melpomene, using chemical analysis, behavioral experiments, and feeding experiments with labeled biosynthetic pheromone precursors. The abdominal scent glands of males contained a complex odor bouquet, consisting of the volatile compound (E)-β-ocimene together with some trace components and a less volatile matrix made up predominately of esters of common C16- and C18-fatty acids with the alcohols ethanol, 2-propanol, 1-butanol, isobutanol, 1-hexanol, and (Z)-3-hexenol. This bouquet is formed during the first days after eclosion, and transferred during copulation to the females. Virgin female scent glands do not contain these compounds. The transfer of ocimene and the esters was shown by analysis of butterflies of both sexes before and after copulation. Additional proof was obtained by males fed with labeled D-13C6– glucose. They produced 13C-labeled ocimene and transferred it to females during copulation. Behavioral tests with ocimene applied to unmated females showed its repellency to males. The esters did not show such activity, but they moderated the evaporation rate of ocimene. Our investigation showed that β-ocimene is an antiaphrodisiac pheromone of H. melpomene.


Pheromones Heliconius Antiaphrodisiacs Sperm competition Ocimene Fatty acid esters Labeled pheromone Pheromone biosynthesis 



We thank A. Wartenberg, R. Watkins, S. Marout, and K. Busby for assisting rearing butterflies; the United States Department of Agriculture for import and rearing permits, and Costa Rica’s Ministerio del Ambiente y Energía for collection and exportation permits. This work was funded by the Deutsche Forschungsgemeinschaft and the University of Texas at Austin graduate program in Ecology, Evolution, and Behavior. This material is also based on work supported by the National Science Foundation and the Office of International Science and Engineering under grant No 0608167. Austin facilities were developed through grants from NSF and matching support from UT Austin to LEG.


  1. Andersson, S. and Dobson, H. E. M. 2003a. Antennal responses to floral scents in the butterfly Heliconius melpomene. J. Chem. Ecol. 29:2319–2330.PubMedCrossRefGoogle Scholar
  2. Andersson, S. and Dobson, H. E. M. 2003b. Behavioral foraging responses by the butterfly Heliconius melpomene to Lantana camara floral scent. J. Chem. Ecol. 29:2303–2318.PubMedCrossRefGoogle Scholar
  3. Andersson, J., Borg-Karlson, A. K., and Wiklund, C. 2000. Sexual cooperation and conflict in butterflies: A male-transferred anti-aphrodisiac reduces harassment of recently mated females. Proc. R. Soc. Lond. B 267:1271–1275.CrossRefGoogle Scholar
  4. Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Botan. J. Linn. Soc. 140:129–153.CrossRefGoogle Scholar
  5. Andersson, J., Borg-Karlson, A. K., and Wiklund, C. 2003. Antiaphrodisiacs in pierid butterflies: A theme with variation! J. Chem. Ecol. 29:1489–1499.PubMedCrossRefGoogle Scholar
  6. Bateman, P. W., Ferguson, J. W. H., and Yetman, C. A. 2006. Courtship and copulation, but not ejaculates, reduce the longevity of female field crickets (Gryllus bimaculatus). J. Zool. 268:341–346.CrossRefGoogle Scholar
  7. Boggs, C. L., Smiley, J. T., and Gilbert, L. E. 1981. Patterns of pollen exploitation by Heliconius butterflies. Oecologia 48:284–289.CrossRefGoogle Scholar
  8. Boppré, M. 1978. Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies. Entomol. Exp. Appl. 24:264–277.CrossRefGoogle Scholar
  9. Boppré, M. 1984. Chemically mediated interactions between butterflies, pp. 259–275, in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. GB-London: Academic Press, reprinted edition 1989 by Princeton University Press.Google Scholar
  10. Cane, D. E. 1999. Isoprenoid biosynthesis: Overview, pp. 1–13, in D. Barton, K. Nakanishi, O. Meth-Cohn, D. E. Cane (eds.). Comprehensive Natural Products Chemistry Vol. 2. Elsevier, Amsterdam.Google Scholar
  11. Clutton-Block, T. and Langley, P. 1997. Persistent courtship reduces male and female longevity in captive tsetse flies Glossina morsitans morsitans Westwood (Diptera: Glossinidae). Behav. Ecol. 8:392–395.CrossRefGoogle Scholar
  12. Conner, W. E., Boada, R., Schroeder, F. C., Gonzalez, A., Meinwald, J., and Eisner, T. 2000. Chemical defense: Bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc. Natl. Acad. Sci. USA 97:14406–14411.Google Scholar
  13. Cook, S. E., Vernon, J. G., Bateson, M., and Guilford, T. 1994. Mate choice in the polymorphic African swallowtail butterfly, Papilio dardanus: male-like female may avoid sexual harassment. Anim. Behav. 47:389–397.CrossRefGoogle Scholar
  14. Danci, A., Gries, R., Schaefer, P. W., and Gries, G. 2006. Evidence for four-component close-range sex pheromone in the parasitic wasp Glyptapanteles flavicoxis. J. Chem. Ecol. 32:1539–1554.PubMedCrossRefGoogle Scholar
  15. Dickschat, J. S., Bode, H. B., Mahmud, T., Müller, R., and Schulz, S. 2005. A novel type of geosmin biosynthesis in myxobacteria. J. Org. Chem. 70:5174–5182.PubMedCrossRefGoogle Scholar
  16. Drutu, I., Krygowski, E. S., and Wood, J. L. 2001. Reactive enols in synthesis 2. Synthesis of (+)-latifolic acid and (+)-latifoline. J. Org. Chem. 66:7025–7029.PubMedCrossRefGoogle Scholar
  17. Eisenreich, W., Bacher, A., Arigoni, D., and Rohdich, F. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 61:1401–1426.Google Scholar
  18. Eltringham, M. A. 1925. On the abdominal glands in Heliconius (Lepidoptera). Trans. Entomol. Soc. Lond. 269–275.Google Scholar
  19. Emsley, M. G. 1963. A morphological study of image Heliconiinae (Lep.: Nymphalidae) with a consideration of the evolutionary relationships within the group. Zoologica 48:85–131.Google Scholar
  20. Engler-Chaouat, H. S. and Gilbert, L. E. 2007. De novo synthesis vs. sequestration: Negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J. Chem. Ecol. 33:25–42.PubMedCrossRefGoogle Scholar
  21. Estrada, C. and Jiggins, C. D. 2002. Patterns of pollen feeding and habitat preference among Heliconius species. Ecol. Entomol. 27:448–456.CrossRefGoogle Scholar
  22. Franklin, C. L., Li, H., and Martin, S. F. 2003. Design, Synthesis, and Evaluation of water-soluble phospholipid analogues as inhibitors of phospholipase C from Bacillus cereus. J. Org. Chem. 68:7298–7307.PubMedCrossRefGoogle Scholar
  23. Gilbert, L. E. 1976. Postmating female odor in Heliconius butterflies: A male-contributed antiaphrodisiac? Science 193:419–420.PubMedCrossRefGoogle Scholar
  24. Happ, G. 1969. Multiple sex pheromones of the mealworm beetle, Tenebrio molitor L. Nature 222:180–181.PubMedCrossRefGoogle Scholar
  25. Jetz, W., Rowe, C., and Guilford, T. 2001. Non-warning odors trigger innate color aversions—as long as they are novel. Behav. Ecol. 12:134–139.CrossRefGoogle Scholar
  26. Jiggins, C. D., Estrada, C., and Rodrigues, A. 2004. Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol. 17:680–691.PubMedCrossRefGoogle Scholar
  27. Kaye, H., Mackintosch, N. J., Rothschild, M., and Moore, B. P. 1989. Odour of pyrazine potentiates an association between environmental cues and unpalatable taste. Anim. Behav. 37:1–6.CrossRefGoogle Scholar
  28. Kukuk, P. 1985. Evidence for an antiaphrodisiac in the sweat bee Lasioglossum (Dialictus) zephyrum. Science 227:656–657.PubMedCrossRefGoogle Scholar
  29. Lindström, L., Rowe, C., and Guilford, T. 2001. Pyrazine odour makes visually conspicuous prey aversive. Proc. R. Soc. Lond B. 268:159–162.CrossRefGoogle Scholar
  30. Matsushita, H. and Negishi, E. 1982. Palladium-catalyzed reactions of allylic electrophiles with organometallic reagents. A regioselective 1,4-elimination and a regio- and stereoselective reduction of allylic derivatives. J. Org. Chem. 47:4161–4165.CrossRefGoogle Scholar
  31. Miyakado, M., Meinwald, J., and Gilbert, L. E. 1989. (R)-(Z,E)-9,11-Octadecadien-13-olide: An intriguing lactone from Heliconius pachinus (Lepidoptera). Experientia 45:1006–1008.PubMedCrossRefGoogle Scholar
  32. Moore, B. P., Brown, W. V., and Rothschild, M. 1990. Methylalkylpyrazines in aposematic insects, their hostplants and mimics. Chemoecology 1:43–51.CrossRefGoogle Scholar
  33. Nahrstedt, A. and Davis, R. H. 1983. Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 75B:65–73.Google Scholar
  34. Nahrstedt, A. and Davis, R. H. 1985. Biosynthesis and quantitative relationships of the cyanogenic glucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 82B:745–749.Google Scholar
  35. Pare, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121:325–332.PubMedCrossRefGoogle Scholar
  36. Piel, J., Donath, J., Bandemer, K., and Boland, W. 1998. Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles. Angew. Chem. Int. Ed. 37:2478–2481.CrossRefGoogle Scholar
  37. Ross, G. N., Fales, H. M., Lloyd, H. A., Jones, T., Sokoloski, E. A., Marshall-Batty, K., and Blum, M. S. 2001. Novel chemistry of abdominal defensive glands of nymphalid butterfly Agraulis vanillae. J. Chem. Ecol. 27:1219–1228.PubMedCrossRefGoogle Scholar
  38. Schulz, S., Beccaloni, G., Nishida, R., Roisin, Y., Vane-Wright, R. I., and Mcneil, J. N. 1998. 2,5-Dialkyltetrahydrofurans, common components of the cuticular lipids of Lepidoptera. Z. Naturforsch. 53c:107–116.Google Scholar
  39. Schulz, S., Beccaloni, G., Brown, K. S., Boppré, M., Freitas, A. V. L., Ockenfels, P., and Trigo, J. R. 2004. Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae: Ithomiinae). Biochem. Syst. Ecol. 32:699–713.CrossRefGoogle Scholar
  40. Schulz, S., Yildizhan, S., Stritzke, K., Estrada, C., and Gilbert, L. E. 2007. Macrolides from the scent glands of the tropical butterflies Heliconius cydno and Heliconius pachinus. Org. Biomol. Chem. 5:3434–3441.PubMedCrossRefGoogle Scholar
  41. Scott, D. 1986. Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proc. Natl. Acad. Sci. USA 83:8429–8433.PubMedCrossRefGoogle Scholar
  42. Simmons, L. W. 2001. Sperm Competition and Its Evolutionary Consequences in the Insects. Princeton University Press, Princeton and Oxford.Google Scholar
  43. Simonsen, T. J. 2006. Glands, muscles and genitalia. Morphological and phylogenetic implications of histological characters in the male genitalia of fritillary butterflies (Lepidoptera: Nymphalidae: Argynnini). Zool. Scripta 35:231–241.CrossRefGoogle Scholar
  44. Sokal, R. R. and Rohlf, J. 1969. Biometry. W. H. Freeman and Company, San Francisco.Google Scholar
  45. Stavenga, D. G. 2002. Reflections on colourful ommatidia of butterfly eyes. J. Exp. Biol. 205:1077–1085.PubMedGoogle Scholar
  46. Swihart, C. A. 1972. The neural basis of color vision in the butterfly, Heliconius erato. J. Insect Physiol. 18:1015–1025.CrossRefGoogle Scholar
  47. Thornhill, R. and Alcock, J. 1983. The Evolution of Insect Mating Systems. Harvard University Press, Cambridge.Google Scholar
  48. Tomalsky, M. D., Blum, M. S., Jones, T. H., Fales, H. M., Howard, D. F., and Passera, L. 1987. Chemistry and function of exocrine glands of the ants Tapinoma melanocephalum and T. erraticum. J. Chem. Ecol. 13:253–263.CrossRefGoogle Scholar
  49. Wedell, N. 2005. Female receptivity in butterflies and moths. J. Exp. Biol. 208:3433–3440.PubMedCrossRefGoogle Scholar
  50. Weller, S. J., Jacobson, N. L., and Conner, W. E. 1999. The evolution of chemical defenses and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol. J. Linn. Soc. 68:557–578.CrossRefGoogle Scholar
  51. Williams, C. M. and Mander, L. N. 2001. Chromatography with silver nitrate. Tetrahedron 57:425–447.CrossRefGoogle Scholar
  52. Zaccardi, G., Kelber, A., Sison-Mangus, M. P., and Briscoe, A. D. 2006. Color discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209:1944–1955.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Stefan Schulz
    • 1
    Email author
  • Catalina Estrada
    • 2
  • Selma Yildizhan
    • 1
  • Michael Boppré
    • 3
  • Lawrence E. Gilbert
    • 2
  1. 1.Institut für Organische ChemieTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Section of Integrative BiologyThe University of TexasAustinUSA
  3. 3.Forstzoologisches InstitutAlbert-Ludwigs-UniversitätFreiburg i.Br.Germany

Personalised recommendations