Journal of Chemical Ecology

, Volume 33, Issue 12, pp 2293–2307

Bidirectional Selection for Novel Pheromone Blend Ratios in the Almond Moth, Cadra cautella

Article

Abstract

The sex pheromone of the almond moth, Cadra cautella, is a blend of (Z,E)-9,12-tetradecadienyl acetate (Z9,E12–14:Ac, the major component capable of inducing attraction alone) and (Z)-9-tetradecenyl acetate (Z9–14:Ac, the minor component, which is unattractive alone but augments attraction of the major component). In this study, the ratio of the two components responded to artificial directional selection in five of six selected lines, whereas no change was observed in the three control lines. The mean ratio (±SE) of Z9,E12–14:Ac to Z9–14:Ac went from 13.72 ± 1.02:1 to 20.13 ± 0.68:1 in high line 1, an increase of 47%. In the second high-selected line, the mean ratio (±SE) increased from 9.87 ± 0.54:1 to 15.89 ± 0.85:1, an increase of 61%. In low line 1, the mean ratio (±SE) in the parental generation was 10.74 ± 0.78:1 and 7.35 ± 0.41:1 in the last selected generation, a decrease of 32%. The response to selection was greater in low line 2, as the mean ratio (±SE) decreased from 10.11 ± 0.66:1 to 5.65 ± 0.55:1 in the last generation, a decrease of 44%. In low line 3, the mean ratio (±SE) in the parental generation was 13.63 ± 0.82:1 and 6.47 ± 0.26:1 in the last generation, a decrease of 53%. The response to selection was approximately symmetrical with a mean increase of 54% and a mean decrease of 43%. The increases in ratio observed in the high lines were caused by an increase in the titer of the Z9,E12–14:Ac component with no concurrent change in the titer of the component Z9–14:Ac. Among the low selected lines, the titers of both components increased; however, there was a greater relative increase in the titer of the component Z9–14:Ac. The absolute and relative titers of the sex pheromone components had decreased significantly in the F10 generation in some of the selected lines, five generations after the discontinuation of selection.

Keywords

Cadra cautella (Z,E)-9,12-tetradecadienyl acetate (Z)-9-tetradecenyl acetate Artificial selection Sex pheromone Lepidoptera Pyralidae Realized heritability 

References

  1. Allison, J. D., and Cardé, R. T. 2006. Heritable variation in the sex pheromone of the almond moth, Cadra cautella. J. Chem Ecol 32:621–641.PubMedCrossRefGoogle Scholar
  2. Allison, J. D. and Cardé, R. T. 2007. Male pheromone blend preference function measured in choice and no-choice wind-tunnel trials with Cadra cautella. Anim. Behav. (in press). DOI 10.1016/j.anbehav.2007.04.033.
  3. Andersson, M. 1994. Sexual selection. Princeton University Press, Princeton.Google Scholar
  4. Arn, H. 2001. The pherolist. Available at http://www.pherolist.slu.se/index.html.
  5. Barton, N. H., and Turelli, M. 1989. Evolutionary quantitative genetics—how little do we know. Annu. Rev. Genet. 23:337–370.PubMedGoogle Scholar
  6. Basolo, A. L. 1996. The phylogenetic distribution of a female preference. Syst. Biol. 45:290–307.CrossRefGoogle Scholar
  7. Basolo, A. L. 1998. Evolutionary change in a receiver bias: a comparison of female preference functions. Proc. R. Soc. Lond. B 265:2223–2228.CrossRefGoogle Scholar
  8. Brady, U. E., Tumlinson, J. H., Brownlee, R. G., and Silverstein, R. M. 1971. Sex stimulant and attractant in the Indian meal moth and in the almond moth. Science 171:802–804.PubMedCrossRefGoogle Scholar
  9. Butlin, R. K., and Ritchie, M. G. 1989. Genetic coupling in mate recognition systems: what is the evidence? Biol. J. Linn. Soc. 37:237–246.CrossRefGoogle Scholar
  10. Byers, J. A. 2002. Internet programs for drawing moth pheromone analogs and searching literature database. J. Chem. Ecol. 28:807–817.PubMedCrossRefGoogle Scholar
  11. Byers, J. A. 2005. Chemical constraints on the evolution of olfactory communication channels of moths. J. Theor. Biol. 235:199–206.PubMedCrossRefGoogle Scholar
  12. Byers, J. A. 2006. Pheromone component patterns of moth evolution revealed by computer analysis of the Pherolist. J. Anim. Ecol. 75:399–407.CrossRefGoogle Scholar
  13. Cardé, R. T. 2007. Using pheromones to disrupt mating of moth pests, Perspectives in Ecological Theory and Integrated Pest Management. pp. 122–169, in M. Kogan, and P. Jepson (eds.). Cambridge University Press, Cambridge.Google Scholar
  14. Cardé, R. T., and Haynes, K. F. 2004. Structure of the pheromone communication channel in moths, Advances in Insect Chemical Ecology. pp. 283–332, in R. T. Cardé, and J. G. Millar (eds.). Cambridge University Press, Cambridge.Google Scholar
  15. Cardé, R. T., and Minks, A. K. 1995. Control of moth pests by mating disruption: Successes and constraints. Annu. Rev. Entomol. 40:559–585.CrossRefGoogle Scholar
  16. Cardé, R. T., Cardé, A. M., Hill, A. S., and Roelofs, W. L. 1977. Sex pheromone specificity as a reproductive isolating mechanism among sibling species Archips argyrospilus and A. mortuanus and other sympatric tortricine moths (Lepidoptera: Tortricidae). J. Chem. Ecol. 3:71–84.CrossRefGoogle Scholar
  17. Collins, R. D., and Cardé, R. T. 1989. Selection for altered pheromone-component ratios in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). J. Insect Behav. 2:609–621.CrossRefGoogle Scholar
  18. Collins, R. D., Rosenblum, S. L., and Cardé, R. T. 1990. Selection for increased pheromone-component titre in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Physiol. Entomol. 15:141–147.Google Scholar
  19. Darwin, C. 1871. The Descent of Man and Selection in Relation to Sex. Murray, London.Google Scholar
  20. Endler, J. A. 1992. Signals, signal conditions, and the direction of evolution. Am. Nat. 139:S125–S153.CrossRefGoogle Scholar
  21. Falconer, D. S., and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics. 4th edn.Longman, New York.Google Scholar
  22. Groot, A. T., Horovitz, J. L., Hamilton, J., Santangelo, R. G., Schal, C., and Gould, F. 2006. Experimental evidence for interspecific directional selection on moth pheromone communication. Proc. Natl. Acad. Sci. U S A 103:5858–5863.PubMedCrossRefGoogle Scholar
  23. Holloway, J. D., Bradley, J. D., and Carter, D. J. 1987. Lepidoptera, pp. 1–22, in C. R. Betts (ed.). CIE Guides to Insects of Importance to ManCAB International, Oxford.Google Scholar
  24. Klun, J. A., Plimmer, J. R., Bierl-leonhardt, B. A., Sparks, A. N., and Chapman, O. L. 1979. Trace chemicals – Essence of sexual communication-systems in Heliothis species. Science 204:1328–1330.PubMedCrossRefGoogle Scholar
  25. Linn, C. E. Jr., and Roelofs, W. L. 1995. Pheromone communication in moths and its role in the speciation process, Speciation and the Recognition Concept. pp. 263–300, in D. M. Lambert, and H. G. Spencer (eds.). John Hopkins University Press, Baltimore.Google Scholar
  26. Löfstedt, C., and Kozlov, M. 1996. A phylogenetic analysis of pheromone communication in primitive moths, Insect Pheromone Research: New Directions. pp. 473–489, in R. T. Cardé, and A. K. Minks (eds.). Chapman and Hall, New York.Google Scholar
  27. Löfstedt, C., Herrebout, W. M., and Menken, S. B. J. 1991. Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae). Chemoecology 2:20–28.CrossRefGoogle Scholar
  28. McElfresh, J. S., and Millar, J. G. 2001. Geographic variation in the pheromone system of the saturniid moth Hemileuca eglanterina. Ecology 82:3505–3518.Google Scholar
  29. Mochizuki, F., Fukomoto, T., Noguchi, H., Sugie, H., Morimoto, T., and Ohtani, K. 2002. Resistance to a mating disruptant composed of (Z)-11-tetradecenyl acetate in the smaller tea tortrix, Adoxophyes honmai (Yasuda) (Lepidoptera: Tortricidae). Applied Entomology and Zoology 37:299–304.CrossRefGoogle Scholar
  30. Raina, A. K., Klun, J. A., and Stadelbacher, E. A. 1986. Diel periodicity and effect of age and mating on female sex pheromone titer in Heliothis zea (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 79:128–131.Google Scholar
  31. Raulston, J. R., Snow, J. W., Graham, H. M., and Lingren, P. D. 1975. Tobacco budworm—effect of prior mating and sperm content on mating-behavior of females. Ann. Entomol. Soc. Am. 68:701–704.Google Scholar
  32. Read, J. S., and Haines, C. P. 1979. Secondary pheromone components and synergism in stored-products phycitinae. J. Chem. Ecol. 5:251–257.CrossRefGoogle Scholar
  33. Ritchie, M. G. 1996. The shape of female mating preferences. Proc. Natl. Acad. Sci. U S A 93:14628–14631.PubMedCrossRefGoogle Scholar
  34. Ritchie, M. G., Saarikettu, M., and Hoikkala, A. 2005. Variation, but no covariance, in female preference functions and male song in a natural population of Drosophila montana. Anim. Behav. 70:849–854.CrossRefGoogle Scholar
  35. Roelofs, W. L., and Brown, R. L. 1982. Pheromones and the evolutionary relationships of Tortricidae. Annu. Rev. Ecol. Syst. 13:395–422..CrossRefGoogle Scholar
  36. Roelofs, W. L., and Comeau, A. 1969. Sex pheromone specificity: taxonomic and evolutionary aspects in Lepidoptera. Science 165:398–400.PubMedCrossRefGoogle Scholar
  37. Roff, D. A. 1997. Evolutionary Quantitative Genetics. Chapman & Hall, New York.Google Scholar
  38. Shorey, H. H. 1970. Sex pheromones of the Lepidoptera, Control of Insect Behavior by Natural Products. pp. 249–284, in D. L. Wood, R. M. Silverstein, and M. Nakajima (eds.). Academic, New York.Google Scholar
  39. Sreng, I., Glover, T., and Roelofs, W. 1989. Canalization of the redbanded leafroller moth sex pheromone blend. Arch. Insect Biochem. Physiol. 10:73–82.CrossRefGoogle Scholar
  40. Steel, R. G. D., and Torrie, J. H. 1980. Principles and Procedures of Statistics. McGraw-Hill, New York.Google Scholar
  41. Svensson, G. P., Ryne, C., and Löfstedt, C. 2002. Heritable variation of sex pheromone composition and the potential for evolution of resistance to pheromone-based control of the Indian meal moth, Plodia interpunctella. J. Chem. Ecol. 28:1447–1461.PubMedCrossRefGoogle Scholar
  42. Tang, J. D., Charlton, R. E., Cardé, R. T., and Yin, C. M. 1992. Diel periodicity and influence of age and mating on sex-pheromone titer in gypsy-moth Lymantria dispar (L). J. Chem. Ecol. 18:749–760.CrossRefGoogle Scholar
  43. Tumlinson, J. H., Yonce, C. E., Doolittle, R. E., Heath, R. R., Gentry, C. R., and Mitchell, E. R. 1974. Sex pheromones and reproductive isolation of the lesser peachtree borer and the peachtree borer. Science 185:614–616.PubMedCrossRefGoogle Scholar
  44. Webster, R. P., and Cardé, R. T. 1984. The effects of mating, exogenous juvenile- hormone and a juvenile-hormone analog on pheromone titer, calling and oviposition in the omnivorous leafroller moth (Platynota stultana). J. Insect Physiol. 30:113–118.CrossRefGoogle Scholar
  45. White, C. S., Lambert, D. M., and Foster, S. P. 1995. Chemical signals and the recognition concept, Speciation and the Recognition Concept. pp. 301–326, in D. M. Lambert, and H. G. Spencer (eds.). John Hopkins University Press, Baltimore.Google Scholar
  46. Wilson, E. O., and Bossert, W. H. 1963. Chemical communication among animals. Recent Prog. Hormone Res. 19:673–716.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations