Journal of Chemical Ecology

, Volume 33, Issue 12, pp 2281–2292

Specificity in Chemical Profiles of Workers, Brood and Mutualistic Fungi in Atta, Acromyrmex, and Sericomyrmex Fungus-growing Ants

  • Freddie-Jeanne Richard
  • Michael Poulsen
  • Falko Drijfhout
  • Graeme Jones
  • Jacobus J. Boomsma
Article

Abstract

Neotropical attine ants live in obligatory symbiosis with a fungus that they grow for food on a substrate of primarily plant material harvested by workers. Nestmate recognition is likely based on chemical cues as in most other social insects, but recent studies have indicated that both the ants and their mutualistic fungi may contribute to the recognition templates. To investigate the within-colony variation in chemical profiles, we extracted and identified compounds from the cuticle of workers, the postpharyngeal gland of workers, ant pupae and larvae, and the fungal symbiont of three species of higher attine ants: Atta colombica, Acromyrmex echinatior, and Sericomyrmex amabilis. The relative proportions of identified compounds were compared and represented 11 classes: n-alkanes, alkenes, branched methylalkanes, branched dimethylalkanes, trimethylalkanes, branched alkenes, aldehydes, alcohols, acetates, acids, and esters. The chemical profiles in all three species are likely to be sufficiently different to allow discrimination at the species and colony level and sufficiently similar within colonies to generate a relatively constant colony-specific chemical gestalt. The relative likelihood of individual compounds being derived from the ants, the ant brood, or the fungal symbiont are discussed. We hypothesize that hydrocarbons are particularly important as recognition cues because they appear to simultaneously allow the assessment of developmental stages and the identification of symbiont, colony, and species.

Keywords

Cuticular hydrocarbons Colony odor Recognition Symbiosis 

Supplementary material

References

  1. Akino, T. and Yamaoka, R. 1998. Chemical mimicry in the root aphid parasitoid Paralipsis eikoae Yasumatsu (Hymenoptera: aphidiidae) of the aphid attending ant Lasius sakagamii Yamauchi and Hayashida (Hymenoptera: Formicidae). Chemoecology 8:153–161.CrossRefGoogle Scholar
  2. Beye, M., Neumann, P., and Moritz, R. F. A. 1997. Nestmate recognition and the genetic gestalt in the mound-building ant Formica polyctena. Insectes Soc. 44:49–58.CrossRefGoogle Scholar
  3. Beye, M., Neumann, P., Chapuisat, M., and Pamilo, P., and Moritz, R. F. A. 1998. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Sociobiol. 43:67–72.CrossRefGoogle Scholar
  4. Blomquist, G. J., Howard, R. W., and McDaniel, C. A. 1979. Structures of the cuticular hydrocarbons of the termites Zootermopsis angusticollis (Hagen). Insect Biochem. 9:365–370.CrossRefGoogle Scholar
  5. Bonavita-Cougourdan, A., Clément, J., and Lange, C. 1989. The role of cuticular hydrocarbons in the recognition of larvae by workers of the ant Camponotus vagus: changes in the chemical signature in response to social environment (Hymenoptera: Formicidae). Sociobiology 16:49–74.Google Scholar
  6. Boomsma, J. J., Nielsen, J., Sundström, L., Oldham, N. J., Tentschert, J., Petersen, H. C., and Morgan, E. D. 2003. Informational contraints on optimal sex allocation in ant. Proc. Natl. Acad. Sci. USA 100:158799–8804.PubMedCrossRefGoogle Scholar
  7. Bot, A. N. M., Rehner, S. A., and Boomsma, J. J. 2001. Partial incompatibility between ants and symbiotic fungi in two sympatric species of Acromyrmex leaf-cutting ants. Evolution 55:1980–1991.PubMedGoogle Scholar
  8. Brandão, C. R. F. and Mayhé-Nunes, A. J. 2001. A new fungus-growing genus, Mycetagroicus gen. n., with the description of three new species and comments on the monophyly of the Attini (Hymenoptera: Formicidae). Sociobiology 38:639–665.Google Scholar
  9. Breed, M. D. 1983. Nestmate recognition in honey bees. Anim. Behav. 31:86–91.CrossRefGoogle Scholar
  10. Carlson, D. A., Bernier, U. R., and Sutton, B. C. 1998. Evolution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24:1845–1865.CrossRefGoogle Scholar
  11. Chapela, I. H., Rehner, S. A., Schultz, T. R., and Mueller, U. G. 1994. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266:1691–1694.PubMedCrossRefGoogle Scholar
  12. Crosland, M. W. J. 1989. Kin recognition in the ant Rhytidoponera confusa. I. Environmental odour. Anim. Behav. 37:912–919.CrossRefGoogle Scholar
  13. Currie, C. R., Wong, B., Stuart, A. E., Schultz, T. R., Rehner, S. A., Mueller, U. G., Sung, G. H., Spatafora, J. W., and Straus, N. A. 2003. Ancient tripartite coevolution in the Attine ant–microbe symbiosis. Science 299:386–388.PubMedCrossRefGoogle Scholar
  14. Currie, C. R., Poulsen, M., Mendenhall, J., Boomsma, J. J., and Billen, J. 2006. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83.PubMedCrossRefGoogle Scholar
  15. Elmes, G. W., Akino, T., Thomas, J. A., Clarke, R. T., and Knapp, J. J. 2002. Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia 130:525–535.CrossRefGoogle Scholar
  16. Heinze, J., Foitzik, S., Hippert, A., and Hölldobler, B. 1996. Apparent dear-enemy phenomenon and environment-based recognition cues in the ant Leptothorax nylanderi. Ethology 102:510–522.CrossRefGoogle Scholar
  17. Heinze, J., Stengl, B., and Sledge, M. F. 2002. Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla cf. inversa. Behav. Ecol. Sociobiol. 52:59–65.CrossRefGoogle Scholar
  18. Hinkle, G., Wetterer, J. K., Schultz, T. R., and Sogin, M. L. 1994. Phylogeny of the attine ant fungi based on analysis of small subunit ribosomal RNA gene sequences. Science 266:1695–1697.PubMedCrossRefGoogle Scholar
  19. Hölldobler, B. and Wilson, E. O. 1990. The ants. 732 pp. Belknap, Cambridge, MA.Google Scholar
  20. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocabons. Annu. Rev. Entomol. 50:371–393.PubMedCrossRefGoogle Scholar
  21. Howard, R. W., Mcdaniel, C. A., and Blomquist, G. J. 1978. Cuticular hydrocarbons of the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae). J. Chem. Ecol. 4:233–245.CrossRefGoogle Scholar
  22. Howard, R. W., Mcdaniel, C. A., Nelson, D. R., Blomquist, G. J., Gelbaum, L. T., and Zalkow, L. H. 1982. Cuticular hydrocarbons of Reticulitermes virginicus (BANKS) and their role as potential species and caste-recognition cues. J. Chem. Ecol. 8:1227–1239.CrossRefGoogle Scholar
  23. Jutsum, A. R., Saunders, T. S., and Cherrett, J. M. 1979. Intraspecific aggression in the leaf-cutting ant Acromyrmex octospinosus. Anim. Behav. 27:839–844.CrossRefGoogle Scholar
  24. Lahav, S., Soroker, V., Hefetz, A., and Vander Meer, R. K. 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 86:246–249.CrossRefGoogle Scholar
  25. Lambardi, D., Dani, F. R., Turillazzi, S., and Boomsma, J. 2007. Incipient social parasites of Acromyrmex leaf-cutting ants avoid host aggression by being chemically inconspicuous. Behav. Ecol. Sociobiol. 61:843–851.CrossRefGoogle Scholar
  26. Liang, D. and Silverman, J. 2000. You are what you eat: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416.PubMedCrossRefGoogle Scholar
  27. Lommelen, E., Johnson, C. A., Drijfhout, F. P., Billen, J., Wenseleers, T., and Gobin, B. 2006. Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. J. Chem. Ecol. 32:2023–2034.PubMedCrossRefGoogle Scholar
  28. Mikheyev, A. S., Mueller, U. G., and Boomsma, J. J. 2007. Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi. Mol. Ecol. 16:209–216.PubMedCrossRefGoogle Scholar
  29. Mueller, U. G. 2002. Ant versus fungus versus mutualism: ant cultivar conflict and the deconstruction of the Attine ant–fungus symbiosis. Am. Nat. 160:S67–S98.CrossRefPubMedGoogle Scholar
  30. Mueller, U. G., Rehner, S. A., and Schultz, T. R. 1998. The evolution of agriculture in ants. Science 281:2034–2038.PubMedCrossRefGoogle Scholar
  31. Mueller, U. G., Schultz, T. R., Currie, C. R., Adams, R. M. M., and Malloch, D. 2001. The origin of the Attine ant–fungus mutualism. Q. Rev. Biol. 76:169–197.PubMedCrossRefGoogle Scholar
  32. Nielsen, J., Boomsma, J. J., Oldham, N. J., Petersen, H. C., and Morgan, E. D. 1999. Colony-level and season-specific variation in cuticular hydrocarbon profiles of individual workers in the ant Formica truncorum. Insect. Soc. 46:58–65.CrossRefGoogle Scholar
  33. Obin, M. S. 1986. Nestmate recognition cues in laboratory and field colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae): effect of environment and the role of cuticular hydrocarbons. J. Chem. Ecol. 12:1965–1975.CrossRefGoogle Scholar
  34. Poulsen, M. and Boomsma, J. J. 2005. Mutualistic fungi control crop diversity in fungus-growing ants. Science 307:741–744.PubMedCrossRefGoogle Scholar
  35. Richard, F. J., Hefetz, A., Christides, J. P., and Errard, C. 2004. Food influence on colonial recognition and chemical signature between nestmates in the fungus-growing ant Acromyrmex subterraneus. Chemoecology 14:9–16.CrossRefGoogle Scholar
  36. Richard, F. J., Mora, P., Errard, C., and Rouland, C. 2005. Digestive capacities of leaf-cutting ants and the contribution of their fungal cultivar to the degradation of plant material. J. Comp. Physiol. B 175:297–303.PubMedCrossRefGoogle Scholar
  37. Richard, F. J., Poulsen, M., Hefetz, A., Errard, C., Nash, D. R., and Boomsma, J. J. 2007. The origin of chemical profiles of fungal symbionts and their significance for nestmate recognition in Acromyrmex leaf-cutting ants. Behav. Ecol. Sociobiol. 61:1637–1649.CrossRefGoogle Scholar
  38. Schultz, T. R. and Meier, R. 1995. A phylogenetic analysis of the fungus-growing ants (Hymenoptera: Formicidae: attini) based on morphological characters of the larvae. Syst. Entomol. 20:337–370.Google Scholar
  39. Silverman, J. and Liang, D. 2001. Colony disassociation following diet partitioning in a unicolonial ant. Naturwissenschaften 88:73–77.PubMedCrossRefGoogle Scholar
  40. Singer, T. L. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38:394–405.Google Scholar
  41. Singer, T. L. and Espelie, K. E. 1996. Nest surface hydrocarbons facilitate nestmate recognition for the social wasp, Polistes metricus Say (Hymenoptera, Vespidae). J. Insect Behav. 9:857–870.CrossRefGoogle Scholar
  42. Soroker, V., Vienne, C., Hefetz, A., and Nowbahari, E. 1994. The postpharyngeal gland as a “Gestalt” organ for nestmate recognition in the ant Cataglyphis niger. Naturwissenschaften 81:510–513.Google Scholar
  43. Soroker, V., Vienne, C., and Hefetz, A. 1995. Hydrocarbon dynamics within and between nestmates in Cataglyphis niger (Hymenoptera: Formicidae). J. Chem. Ecol. 21(3):365–378.CrossRefGoogle Scholar
  44. Vander Meer, R. K. and Morel, L. 1998. Nestmate recognition in ants, pp. 79–103, in R. K. Vander Meer, M. Breed, K. E. Espelie, M. Winston, (eds.). Pheromone Communication in Social Insects. Westview, Boulder, CO.Google Scholar
  45. Viana, A. M. M., Frézard, A., Malosse, C., Della Lucia, T. M. C., Errard, C., and Lenoir, A. 2001. Colonial recognition of fungus in the fungus-growing ant Acromyrmex subterraneus subterraneus (Hymenoptera: Formicidae). Chemoecology 11:29–36.CrossRefGoogle Scholar
  46. Wagner, D., Tissot, M., Cuevas, W., and Gordon, D. M. 2000. Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J. Chem. Ecol 26:2245–2257.CrossRefGoogle Scholar
  47. Weber, N. A. 1972. Gardening ants, the attines. Memoirs of the American Philosophical Society, Philadelphiap xvii + 146.Google Scholar
  48. Wilson, E. O. 1971. The insect societies. 548 pp. Belknap, Cambridge, MA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Freddie-Jeanne Richard
    • 1
    • 2
  • Michael Poulsen
    • 3
    • 4
  • Falko Drijfhout
    • 1
  • Graeme Jones
    • 1
  • Jacobus J. Boomsma
    • 3
  1. 1.Chemical Ecology group, Lennard Jones LaboratoriesKeele UniversityStaffordshireEngland
  2. 2.Department of EntomologyNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Population Biology, Institute of BiologyUniversity of CopenhagenCopenhagenDenmark
  4. 4.Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations