Journal of Chemical Ecology

, Volume 33, Issue 12, pp 2266–2280 | Cite as

Insect-synthesised Retronecine Ester Alkaloids: Precursors of the Common Arctiine (Lepidoptera) Pheromone Hydroxydanaidal

  • John A. Edgar
  • Michael BoppréEmail author
  • Eva Kaufmann


Many pyrrolizidine alkaloid (PA)-adapted insects convert PAs sequestered from their larval host plants into “insect-PAs” in which the acid components of the alkaloids are replaced by small, branched aliphatic 2-hydroxy acids of insect origin. It has been proposed that insect-PAs are precursors of the pheromone hydroxydanaidal in male Estigmene acrea moths, but it is not clear why they are specifically required or what the structural features or chemical properties are that make insect-PAs more suitable for conversion into hydroxydanaidal than superficially similar alkaloids of plant origin. Evidence is presented that insect-PAs are also precursors of hydroxydanaidal in the polyphageous arctiine, Creatonotos transiens, and a new biosynthetic pathway to hydroxydanaidal is proposed that has a mandatory requirement for insect-PAs as intermediates.


Pyrrolizidine alkaloids Creatonotos transiens Arctiinae Insect-PAs Male pheromones Hydroxydanaidal Biosynthesis 



Thanks to Monika Siegel and Anita Kiesel for technical support and Steven M. Colegate for LC-ESI-MS confirming molecular weight data.


  1. Aplin, R. T., Benn, H., and Rothschild, M. 1968. Poisonous alkaloids in the body tissues of the cinnabar moth (Callimorpha jacobaeae L.). Nature 219:747–748.CrossRefGoogle Scholar
  2. Bell, T. W., Boppré, M., Schneider, D., and Meinwald, J. 1984. Stereochemical course of pheromone biosynthesis in the arctiid moth, Creatonotos transiens. Experientia 40:713–714.PubMedCrossRefGoogle Scholar
  3. Bergomaz, R., and Boppré, M. 1986. A simple instant diet for rearing Arctiidae and other moths. J. Lep. Soc. 40:131–137.Google Scholar
  4. Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26.CrossRefGoogle Scholar
  5. Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. J. Chem. Ecol. 16:165–185.CrossRefGoogle Scholar
  6. Boppré, M., and Schneider, D. 1985. Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in male Creatonotos moths (Lep.: Arctiidae). J. Comp. Physiol. 157:569–577.CrossRefGoogle Scholar
  7. Boppré, M., Colegate, S. M., and Edgar, J. A. 2005. Pyrrolizidine alkaloids of Echium vulgare honey found in pure pollen. J. Agric. Food Chem. 53:594–600.PubMedCrossRefGoogle Scholar
  8. Brehm, G., Hartman, T., and Willmott, K. 2007. Pyrrolizidine alkaloids and pharmacophagous Lepidoptera visitors of Prestonia amabilis (Apocynaceae) in a montane rain forest in Ecuador. Ann. Miss. Bot. Gard. 94:463–473.Google Scholar
  9. Bull, L. B., Culvenor, C. C. J., and Dick, A. T. 1968. The Pyrrolizidine Alkaloids. North-Holland Publ., Amsterdam.Google Scholar
  10. Conner, W. E., and Weller, S. J. 2004. A quest for alkaloids: The curious relationship between tiger moths and plants containing pyrrolizidine alkaloids, Advances in Insect Chemical Ecology. pp. 248–282, in R. T. Cardé, and J. Millar (eds.). Cambridge Univ. Press, Cambridge/MA.Google Scholar
  11. Culvenor, C. C. J., Edgar, J. A., Smith, L. W., and Tweedale, H. J. 1970a. Dihydropyrrolizines. III: Preparation and reactions of derivatives related to pyrrolizidine alkaloids. Aust. J. Chem. 23:1853–1867.CrossRefGoogle Scholar
  12. Culvenor, C. C. J., Edgar, J. A., Smith, L. W., and Tweedale, H. J. 1970b. Dihydropyrrolizines. IV: Manganese dioxide oxidation of 1,2-dehydropyrrolizidines. Aust. J. Chem. 23:1869–1879.CrossRefGoogle Scholar
  13. Davidson, R. B., Baker, C., McElveen, M., and Conner, W. E. 1997. Hydroxydanaidal and the courtship of Haploa (Lepidoptera: Arctiidae). J. Lep. Soc. 51:228–294.Google Scholar
  14. Edgar, J. A., Culvenor, C. C. J., and Pliske, T. E. 1976. Isolation of a lactone, structurally related to the esterifying acids of pyrrolizidine alkaloids, from the costal fringes of male Ithomiinae. J. Chem. Ecol. 2:263–270.CrossRefGoogle Scholar
  15. Edgar, J. A., Culvenor, C. C. J., Cockrum, P. A., Smith, L. W., and Rothschild, M. 1980. Callimorphine: Identification and synthesis of the cinnibar moth ‘metabolite'. Tetrahedron Lett. 21:1383–1384.CrossRefGoogle Scholar
  16. Ehmke, A., Witte, L., Biller, A., and Hartmann, T. 1990. Sequestration, N-oxidation and transformation of plant pyrrolizidine alkaloids by the arctiid moth Tyria jacobaeae L. Z. Naturforsch. 45c:1185–1192.Google Scholar
  17. Eisner, T., Rossini, C., Gonzalez, A., Iyengar, V. K., Siegler, M. V. S., and Smedley, S. R. 2002. Paternal investment in egg defence, Chemoecology of Insect Eggs and Egg Deposition. pp. 91–116, in M. Hilker, and T. Meiners (eds.). Blackwell, Oxford.Google Scholar
  18. Giordan, M., Custodio, R., and Trigo, J. R. 1996. Pyrrolizidine alkaloids necine bases: ab initio, semiempirical and molecular approaches to molecular properties. J. Comput. Chem. 17:156–166.CrossRefGoogle Scholar
  19. Hartmann, T. 1999. Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495.CrossRefGoogle Scholar
  20. Hartmann, T., and Ober, D. 2000. Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Topics Current Chem. 209:207–243.CrossRefGoogle Scholar
  21. Hartmann, T., and Witte, L. 1995. Pyrrolizidine alkaloids: Chemical, biological and chemoecological aspects, Alkaloids: Chemical and Biological Perspectives. pp. 155–233, in S. W. Pelletier (ed.). Pergamon, Oxford.Google Scholar
  22. Hartmann, T., Biller, A., Witte, L., Ernst, L., and Boppré, M. 1990. Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera). Biochem. Syst. Ecol. 18:549–554.CrossRefGoogle Scholar
  23. Hartmann, T., Theuring, C., Witte, L., and Pasteels, J. M. 2001. Sequestration, metabolism and partial synthesis of tertiary pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem. Mol. Biol. 31:1041–1056.PubMedCrossRefGoogle Scholar
  24. Hartmann, T., Theuring, C., Witte, L., Schulz, S., and Pasteels, J. M. 2003a. Biochemical processing of plant acquired pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem. Mol. Biol. 33:515–523.PubMedCrossRefGoogle Scholar
  25. Hartmann, T., Theuring, C., and Bernays, E. A. 2003b. Are insect-synthesized retronecine esters (creatonotines) the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J. Chem. Ecol 29:2603–2608.PubMedCrossRefGoogle Scholar
  26. Hartmann, T., Theuring, C., Beuerle, T., Ernst, L., Singer, M. S., and Bernays, E. A. 2004a. Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous arctiids and the alkaloid profiles of their larval food-plants. J. Chem. Ecol. 30:229–254.PubMedCrossRefGoogle Scholar
  27. Hartmann, T., Theuring, C., Beuerle, T., and Bernays, E. A. 2004b. Phenological fate of plant-acquired pyrrolizidine alkaloids in the polyphagous arctiid Estigmene acrea. Chemoecology 14:207–216.CrossRefGoogle Scholar
  28. Hartmann, T., Theuring, C., Beuerle, T., Klewer, N., Schulz, S., Singer, M. S., and Bernays, E. A. 2005a. Specific recognition, detoxification and metabolism of pyrrolizidine alkaloids by the polyphagous arctiid Estigmene acrea. Insect Biochem. Mol. Biol. 35:391–411.PubMedCrossRefGoogle Scholar
  29. Hartmann, T., Theuring, C., Beuerle, T., Bernays, E. A., and Singer, M. S. 2005b. Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect Biochem. Mol. Biol. 35:1083–1099.PubMedCrossRefGoogle Scholar
  30. Mattocks, and A. R. 1986. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic, London.Google Scholar
  31. Molyneux, R. J., and Roitman, J. N. 1980. Specific detection of pyrrolizidine alkaloids on thin-layer chromatograms. J. Chromatogr. 195:412–415.CrossRefGoogle Scholar
  32. Naumann, C., Hartmann, T., and Ober, D. 2002. Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proc. Natl. Acad. Sci. USA 99:6085–6090.PubMedCrossRefGoogle Scholar
  33. Nishida, R., Schulz, S., Kim, C. S., Fukami, H., Kuwahara, Y., Honda, K., and Hayashi, N. 1996. Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J. Chem. Ecol. 22:949–971.CrossRefGoogle Scholar
  34. Pasteels, J. M., Termonia, A., Windsor, D., Witte, L., Theuring, C., and Hartmann, T. 2001. Pyrrolizidine alkaloids and pentacyclic triterpene saponins in the defensive secretions of Platyphora leaf beetles. Chemoecology 11:113–120.CrossRefGoogle Scholar
  35. Pasteels, J. M., Theuring, C., Witte, L., and Hartmann, T. 2003. Sequestration and metabolism of protoxic pyrrolizidine alkaloids by larvae of the leaf beetle Platyphora boucardi and their transfer via pupae into defensive secretions of adults. J. Chem. Ecol. 29:337–355.PubMedCrossRefGoogle Scholar
  36. Schulz, S. 1998. Insect-plant interactions—metabolism of plant compounds to pheromones and allomones by Lepidoptera and leaf beetles. Eur. J. Org. Chem. 1998:13–20.CrossRefGoogle Scholar
  37. Schulz, S., Francke, W., Boppré, M., Eisner, T., and Meinwald, J. 1993. Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera, Arctiidae). Proc. Natl. Acad. Sci. USA 90:6834–6838.PubMedCrossRefGoogle Scholar
  38. Schulz, S., Beccaloni, G., Brown, K. S., Boppré, M., Freitas, A. V. L., Ockenfels, P., and Trigo, J. R. 2004. Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae). Biochem. System. Ecol. 32:699–713.CrossRefGoogle Scholar
  39. Trigo, J. R., Brown, K. S. Jr., Henriques, S. A., and Barata, L. E. S. 1996. Quantitative patterns of pyrrolizidine alkaloids in Ithomiinae butterflies. Biochem. Syst. Ecol. 24:181–188.CrossRefGoogle Scholar
  40. Weller, S. J., Jacobson, N. L., and Conner, W. E. 1999. The evolution of chemical defenses and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol. J. Linn. Soc. 68:557–578.CrossRefGoogle Scholar
  41. Werck-Reichhart, D. and Feyereisen, R. 2000. Cytochromes P450: a success story. Genome Biol. 1:3003.1–3003.9.Google Scholar
  42. Wink, M., Schneider, D., and Witte, L. 1988. Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth, Creatonotos transiens: stereochemical conversion of heliotrine. Z. Naturforsch. 43c:737–741.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.CSIRO Livestock IndustriesGeelongAustralia
  2. 2.Forstzoologisches InstitutAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations