Journal of Chemical Ecology

, Volume 33, Issue 11, pp 2133–2147 | Cite as

Antimicrobial Activity of Extractable Conifer Heartwood Compounds Toward Phytophthora ramorum

  • Daniel K. ManterEmail author
  • Rick G. Kelsey
  • Joseph J. Karchesy


Ethyl acetate extracts from heartwood of seven western conifer trees and individual volatile compounds in the extracts were tested for antimicrobial activity against Phytophthora ramorum. Extracts from incense and western redcedar exhibited the strongest activity, followed by yellow-cedar, western juniper, and Port-Orford-cedar with moderate activity, and no activity for Douglas-fir and redwood extracts. Chemical composition of the extracts varied both qualitatively and quantitatively among the species with a total of 37 compounds identified by mass spectrometry. Of the 13 individual heartwood compounds bioassayed, three showed strong activity with a Log10 EC50 less than or equal to 1.0 ppm (hinokitiol, thymoquinone, and nootkatin), three expressed moderate activity ranging from 1.0–2.0 ppm (nootkatol, carvacrol, and valencene-11,12-diol), four compounds had weak activity at 2.0–3.0 ppm [α-terpineol, valencene-13-ol, (+)-β-cedrene, (−)-thujopsene], and three had no activity [(+)-cedrol, δ-cadinene, and methyl carvacrol]. All of the most active compounds contained a free hydroxyl group, except thymoquinone. The importance of a free hydroxyl was demonstrated by the tremendous difference in activity between carvacrol (Log10 EC50 1.81 ± 0.08 ppm) and methyl carvacrol (Log10 EC50 >3.0 ppm). A field trial in California, showed that heartwood chips from redcedar placed on the forest floor for 4 months under Umbellularia californica (California bay laurel) with symptoms of P. ramorum leaf blight significantly limited the accumulation of P. ramorum DNA in the litter layer, compared with heartwood chips from redwood.


Sudden oak death Fungicide Tropolone Monoterpene Sesquiterpene 



We thank the US Department of Agriculture, Forest Service, Pacific Southwest Research Station for funding and the Marin County Open Space District for a permit to work on the Rush Creek Preserve. We thank John Bannister, Ketchikan Wood Technology Center for samples of Alaska yellow-cedar, Gene Braber, USDA, Orleans Ranger District for the sample of Port-Orford-cedar, and Greg Jennings, Bureau of Land Management, Arcata, California Field Office for the sample of redwood. We are especially thankful to Dr. Everett Hansen at Oregon State University for providing the P. ramorum isolate and use of his laboratory facilities and to Lyndsay Frady for her assistance conducting the bioassays.


  1. Adams, R. P. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th Ed. Allured Publishing Corp., Carol Stream, Illinois.Google Scholar
  2. Ahn, Y-J., Lee, S-B., Lee, H-S., and Kim, G-H. 1998. Insecticidal and acaricidal activity of carvacrol and β-thujaplicine derived from Thujopsis dolabrata hondai sawdust. J. Chem. Ecol. 24:81–90.CrossRefGoogle Scholar
  3. Arima, Y., Nakai, Y., Hayakawa, R., and Nishino, T. 2003. Antibacterial effect of β-thujaplicin on staphylococci isolated from atopic dermatitis: relationship between changes in the number of viable bacterial cells and clinical improvement in an eczematous lesion of atopic dermatitis. J. Antimicrob. Chemother. 51:113–122.PubMedCrossRefGoogle Scholar
  4. Barton, G. M., and Macdonald, B. F. 1971. The chemistry and utilization of western redcedar. Dept. Fisheries and Forestry, Can. For. Serv. Pub. No. 1023.Google Scholar
  5. Baya, M., Soulounganga, P., Gelhaye, E., and Gérardin, P. 2001. Fungicidal activity of β-thujaplicin analogues. Pest Manage. Sci. 57:833–838.CrossRefGoogle Scholar
  6. Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Inter. J. Food Microbiol. 94:223–253.Google Scholar
  7. Chisty, M. M., Nargis, M., Inaba, T., Ishita, K., Osanai, A., and Kamiya, H. 2004. Transmission electron microscopy of Schistosoma mansoni cercariae treated with hinokitiol (β-thujaplicin), a compound for potential skin application against cercarial penetration. Tohoku J. Exp. Med. 202:63–67.PubMedCrossRefGoogle Scholar
  8. Cushman, J. H., and Meentemeyer, R. K. 2005. The importance of humans in the dispersal and spread of Phytophthora ramorum at local, landscape, and regional scales, pp. 161–162, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.Google Scholar
  9. Davidson, J. M., Wickland, A. C, Patterson, H. A., Falk, K. R., and Rizzo, D. M. 2005. Transmission of Phytophthora ramorum in mixed-evergreen forest in California. Phytopathology 95:587–596.CrossRefPubMedGoogle Scholar
  10. DeBell, J. D., Morrell, J. J., and Gartner, B. L. 1999. Within-stem variation in tropolone content and decay resistance of second-growth western redcedar. For. Sci. 45:101–107.Google Scholar
  11. DeGroot, R. C., Woodward, B., and Hennon, P. E. 2000. Natural decay resistance of heartwood from dead, standing yellow-cedar trees: laboratory evaluations. For. Prod. J. 50:53–59.Google Scholar
  12. Fallik, E., and Grinberg, S. 1992. Hinokitiol: a natural substance that controls postharvest diseases in eggplant and pepper fruits. Posthar. Biol. Technol. 2:137–144.CrossRefGoogle Scholar
  13. Garbelotto, M., and Rizzo, D. M. 2005. A California-based chronological review (1995–2004) of research on Phytophthora ramorum, the causal agent of sudden oak death. Phytopathol. Mediterr. 44:1–17.Google Scholar
  14. Goheen, E. M., Hansen, E., Kanaskie, A., Osterbauer, N., Parke, J., Pscheidt, J., and Chastagner, G. 2006a. Sudden oak death and Phytophthora ramorum. Oregon State University Extension Service, EM8877. Corvallis, OR.Google Scholar
  15. Goheen, E. M., Kanaskie, A., Parke, J., Roth, M., Osterbauer, N., and Trippe, A. 2006b. Applications of fungicides to protect four hosts from foliar infection by Phytophthora ramorum in Curry County, Oregon, pp. 513–514, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.Google Scholar
  16. Hansen, E. M., Parke, J. L., and Sutton, W. 2005. Susceptibility of Oregon forest trees and shrubs to Phytophthora ramorum: a comparison of artificial inoculation and natural infection. Plant Dis. 89:63–70.CrossRefGoogle Scholar
  17. Hayden, K., Ivors, K., Wilkinson, C., and Garbelotto, M. 2006. TaqMan chemistry for Phytopthora ramorum detection and quantification, with a comparison of diagnostic methods. Phytopathology 96:846–854.CrossRefPubMedGoogle Scholar
  18. Hennon, P. E., D’amore, D. V., Zeglen, S., and Grainger, M. 2005. Yellow-cedar decline in the north coast forest district of British Columbia. US Dept. Agric. For. Serv., Pacific Northwest Res. Sta. Res. Note PNW-RN-549.Google Scholar
  19. Hennon, P., D’amore, D., Wittwer, D., Johnson, A., Schaberg, P., Hawley, G., Beier, C., Sink, S., and Juday, G. 2007a. Climate warming, reduced snow, and freezing injury could explain the demise of yellow-cedar in southeast Alaska, USA. World Res. Rev. 18:427–450.Google Scholar
  20. Hennon, P. E., Hansen, E. M., and Shaw, C. G., III. 1990. Dynamics of decline and mortality of Chamaecyparis nootkatensis in southeast Alaska. Can. J. Bot. 68:651–662.Google Scholar
  21. Hennon, P. E., Woodward, B., and Lebow, P. 2007b. Deterioration of wood from live and dead Alaska yellow-cedar in contact with soil. For. Prod. J. 57 (Forest Products Society).Google Scholar
  22. Heungens, K., De Dobbelaere, I., and Maes, M. 2006. Fungicide control of Phytophthora ramorum on rhododendron, pp. 241–257, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.Google Scholar
  23. Inamori, Y., Shinohara, S., Tsujibo, H., Okabe, T., Morita, Y., Sakagami, Y., Kumeda, Y., and Ishida, N. 1999. Antimicrobial activity and metalloprotease inhibition of hinokitiol-related compounds, the constituents of Thujopsis dolbrata S. and Z. hondai MAK. Biol. Pharm. Bull. 22:990–993.PubMedGoogle Scholar
  24. Inamori, Y., Tsujibo, H., Ohishi, H., Ishii, F., Mizugaki, M., Aso, H., and Ishida, N. 1993. Cytotoxic effect of hinokitiol and tropolone on the growth of mammalian cells and on blastogenesis of mouse splenic T cells. Biol. Pharm. Bull. 16: 521–523.PubMedGoogle Scholar
  25. Ivors, K., Garbelotto, M., Vries, I. D. E., Ruyter-Spira, C., Hekkert, B. T. E., Rosenzweig, N., and Bonants, P. 2006. Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Mol. Ecol. 15:1493–1505.PubMedCrossRefGoogle Scholar
  26. Johnson, H. A., Rogers, L. L., Alkire, M. L., Mccloud, T. G., and Mclaughlin, J. L. 1998. Bioactive monoterpenes from Monarda fistulosa (Lamiaceae). Nat. Prod. Lett. 11:241–250.Google Scholar
  27. Johnston, W. H., Karchesy, J. J., Constantine, G. H., and Craig, A. M. 2001. Antimicrobial activity of some pacific northwest woods against anaerobic bacteria and yeast. Phytother. Res. 15:586–588.PubMedCrossRefGoogle Scholar
  28. Kelsey, R. G., Hennon, P. E., Huso, M., and Karchesy, J. J. 2005. Changes in heartwood chemistry of dead yellow-cedar trees that remain standing for 80 years or more in southeast Alaska. J. Chem. Ecol. 31:2653–2670.PubMedCrossRefGoogle Scholar
  29. Khasawneh, M. A. 2003. Natural and semi-synthetic compounds with biocidal activity against arthropods of public health importance. Ph.D. dissertation. Oregon State University, Corvallis.Google Scholar
  30. Kuhajek, J. M., Jeffers, S. N., Slattery, M., and Wedge, D. E. 2003. A rapid micobioassay for discovery of novel fungicides for Phytophthora spp. Phytopathology 93:46–53.CrossRefPubMedGoogle Scholar
  31. Linderman, R. G., and Davis, E. A. 2006. Evaluation of chemical and biological agents for control of Phytophthora species on intact plants or detached leaves of rhododendron and lilac, pp. 265–267, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.Google Scholar
  32. Little, D. P. 2007. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Syst. Bot. 31:461–480.CrossRefGoogle Scholar
  33. Little, D. P., Schwarzbach, A. E., Adams, R. P., and Hsieh, C-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). Amer. J. Bot. 91:1872–1881.Google Scholar
  34. Manter, D. K., Karchesy, J. J., and Kelsey, R. G. 2006. The sporicidal activity of yellow-cedar heartwood, essential oil and wood constituents toward Phytophthora ramorum in culture. For. Pathol. 36:297–308.Google Scholar
  35. McWilliams, M. G. 2000. Port-Orford-cedar and Phytophthora lateralis: Grafting and heritability of resistance in the host and variation in the pathogen. Ph.D. dissertation, Oregon State University. Corvallis, OR.Google Scholar
  36. Oka, Y., Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z., and Spiegel, Y. 2000. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90:710–715.CrossRefPubMedGoogle Scholar
  37. Rennerfelt, E., and Nacht, G. 1955. The fungicidal activity of some constituents from heartwood of conifers. Sv. Bot. Tidskr. 49:419–432.Google Scholar
  38. Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., and Koike, S. T. 2002a. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 86:205–214.CrossRefGoogle Scholar
  39. Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., and Koike, S. T. 2002b. Phytophthora ramorum and sudden oak death in California: I. Host relationships, pp. 733–740, in R. Standiford, D. McCreary, K. L. Purcell (eds.). Proceedings of the 5th Symposium on Oak Woodlands: Oaks in California’s Changing Landscape. US Dep. Agric. For. Serv. Gen. Tech. Rep. PSW-GTR-184.Google Scholar
  40. Rizzo, D. M., Garbelotto, M., and Hansen, E. M. 2005. Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 43:309–335.PubMedCrossRefGoogle Scholar
  41. Roff, J. W., and Atkinson, J. M. 1954. Toxicity tests of a water-soluble phenolic fraction (thujaplicin-free) of western red cedar. Can. J. Bot. 32:308–309.CrossRefGoogle Scholar
  42. Rudman, P. 1962. The causes of natural durability in timber IX. The antifungal activity of heartwood extractives in wood substrate. Holzforschung 16:74–77.Google Scholar
  43. Rudman, P. 1963. The causes of natural durability in timber. Part XI. Some tests on the fungi toxicity of wood extractives and related compounds. Holzforschung 17:54–57.CrossRefGoogle Scholar
  44. Scheffer, T., and Cowling, E. B. 1966. Natural resistance of wood to microbial deterioration. Annu. Rev. Phytopathol. 4:147–170.CrossRefGoogle Scholar
  45. Schena, L., Hughes, K. J. D., and Cooke, D. E. L. 2006. Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Mol. Plant Pathol. 7:365–379.CrossRefPubMedGoogle Scholar
  46. Taylor, A. M. 2004. Heartwood variation in Douglas-fir and western redcedar. Ph.D. dissertation, Oregon State University. Corvallis, OR.Google Scholar
  47. Tjosvold, S. A., Chambers, D. L., and Koike, S. 2006. Evaluation of fungicides for the control of Phytophthora ramorum infecting Rhododendron, Camellia, Viburnum, and Pieris, pp. 269–271, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.Google Scholar
  48. Trust, R. T., and Coombs, R. W. 1973. Antibacterial activity of β-thujaplicin. Can. J. Microbiol. 19:1341–1346.PubMedCrossRefGoogle Scholar
  49. Turner, J., Jennings, P., Mcdonough, S., Liddell, D., and Stonehouse, J. 2006. Chemical control of Phytophthora ramorum causing foliar disease in hardy nursery stock in the United Kingdom, pp. 273–274, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.Google Scholar
  50. Ultee, A., Bennik, M. H. J., and Moezelaar, R. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68:1561–1568.PubMedCrossRefGoogle Scholar
  51. Voda, K., Boh, B., Vrtačnik, M., and Pohleven, F. 2003. Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Inter. Biodeter. Biodegra. 51:51–59.CrossRefGoogle Scholar
  52. Werres, S. and De Merlier, D. 2003. First detection of Phytophthora ramorum mating type A2 in Europe. Plant Dis. 87:1266.CrossRefGoogle Scholar
  53. Xioung, Y. 2000. Essential oil components of Alaska cedar heartwood. Ms thesis. Oregon State University, Corvallis.Google Scholar
  54. Yamano, H., Yamazaki, T., Sato, K., Shiga, S., Hagiwara, T., Ouchi, K., and Kishimoto, T. 2005. In vitro inhibitory effects of hinokitiol on proliferation of Chlamydia trachomatis. Antimicrob. Agents Chemother. 49:2519–2521.CrossRefGoogle Scholar
  55. Zavarin, E., and Anderson, A. B. 1955. Extractive components from incense-cedar heartwood (Libocedrus decurrens Torrey) II. Occurrence and synthesis of p-methoxythymol and p-methoxycarvacrol, two new phenolic compounds. J. Org. Chem. 20:443–447.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Daniel K. Manter
    • 1
    Email author
  • Rick G. Kelsey
    • 2
  • Joseph J. Karchesy
    • 3
  1. 1.USDA-ARS, Soil-Plant-Nutrient Research UnitFt. CollinsUSA
  2. 2.USDA Forest Service, Pacific Northwest Research StationCorvallisUSA
  3. 3.Wood Science and Engineering DepartmentOregon State UniversityCorvallisUSA

Personalised recommendations