Journal of Chemical Ecology

, Volume 33, Issue 9, pp 1787–1794 | Cite as

Nitroalkenes and Sesquiterpene Hydrocarbons from the Frontal Gland of Three Prorhinotermes Termite Species

  • Rafal Piskorski
  • Robert Hanus
  • Soňa Vašíčková
  • Josef Cvačka
  • Jan Šobotník
  • Aleš Svatoš
  • Irena ValterováEmail author


Frontal gland contents of soldiers of three Prorhinotermes species, Prorhinotermes canalifrons, Prorhinotermes inopinatus, and Prorhinotermes simplex, consisted of two groups of compounds: nitroalkenes and sesquiterpene hydrocarbons. Analysis by gas chromatography-mass spectrometry revealed (E)-1-nitropentadec-1-ene as the major component of the glands with mean values of 152, 207, and 293 μg/individual for P. canalifrons, P. inopinatus, and P. simplex, respectively. Four other 1-nitroalkenes (C13, C14, C16, and C17), and two nitrodienes (C15 and C17) were also detected in the three species. The C17:1 nitroalkene was identified as (E)-1-nitroheptadec-1-ene. The sesquiterpene composition of the gland was species-specific: P. simplex contained (3Z,6E)-α-farnesene (mean of 39 μg/individual), while P. canalifrons and P. inopinatus contained the same compound (means of 0.5 and 1.5 μg/individual, respectively) as well as the (3E,6E) isomer (means of 1.8 and 0.7 μg/individual, respectively). Two other sesquiterpenes, trans-β-bergamotene and (Z)-γ-bisabolene, were also found in low quantities in the frontal gland of P. canalifrons.


Nitroalkenes α-Farnesene Termite soldier Frontal gland Prorhinotermes GC/FT-IR 



We are grateful to Christian Bordereau and Alain Robert for providing us with the P. canalifrons colony. The P. inopinatus material was obtained thanks to a project funded by the US National Science Foundation (DEB-02-11591). We kindly acknowledge Anna-Karin Borg-Karlson for the gift of pure (3E,6E)-α-farnesene and Erin Walsh for the language corrections. Financial support was provided by the Grant Agency of the Academy of Sciences of the Czech Republic (A600550614), and the Z4 055 0506 project realized in the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague.


  1. Adams, R. P. 2007. Identification of Essential Oils Components by Gas Chromatography/Mass Spectrometry, 4th Edition, Allured, Carol Stream.Google Scholar
  2. Banks, N., and Snyder, T. E. 1920. A Revision of the Nearctic Termites. Government Printing Office, Washington, DC.Google Scholar
  3. Bini, L. M., Gentili, L., Tirillini, B., and Pellegrino, R. 2000. Secretion constituents of leaf glandular trichomes of Ocimum basilicum L. Proc. Phytochem. Soc. Eur. 46:143–150.Google Scholar
  4. Blomquist, G. J. and Dillwith, J. W. 1985. Cuticular lipids, pp. 117–154, in G. A. Kerkut, and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 3. Integument, Respiration and Circulation. Pergamon, Oxford.Google Scholar
  5. Brown, J. F. J. 1955. The infrared spectra of nitro and other oxidized nitrogen compounds. J. Am. Chem. Soc. 77:6341–6351.CrossRefGoogle Scholar
  6. Chen, J. A., Henderson, G., and Laine, R. A. 1999. Lignoceric acid and hexacosanoic acid: Major components of soldier frontal gland secretions of the Formosan subterranean termite (Coptotermes formosanus). J. Chem. Ecol. 25:817–824.CrossRefGoogle Scholar
  7. Chuah, C. H., Goh, S. H., and Tho, Y. P. 1990. Chemical defense secretions of some species of Malaysian Rhinotermitidae (Isoptera, Rhinotermitidae). J. Chem. Ecol. 16:685–692.CrossRefGoogle Scholar
  8. Costa-Leonardo, A. M., and Kitayama, K. 1991. Frontal gland dehiscence in the Brazilian termite Serritermes serrifer (Isoptera: Serritermitidae). Sociobiology 19:333–338.Google Scholar
  9. Davies, N. W. 1990. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. A 503:1–24.CrossRefGoogle Scholar
  10. Deligne, J., Quennedey, A., and Blum, M. S. 1981. The enemies and defense mechanisms of termites, pp. 1–76, in H. R. Hermann (ed.). Social Insects, vol. 2. Academic, New York.Google Scholar
  11. Eisner, T., Kriston, I., and Aneshansley, D. J. 1976. Defensive behavior of a termite (Nasutitermes exitiosus). Behav. Ecol. Sociobiol. 1:83–125.CrossRefGoogle Scholar
  12. Emerson, A. E. 1955. Geographical origin and dispersions of termite genera. Fieldiana Zool. 37:465–521.Google Scholar
  13. Joulain, D., and Koenig, W. A. 1998. The Atlas of Spectral Data of Sesquiterpene. E. B.-Verlag, Hamburg.Google Scholar
  14. Kuldová, J., Hrdý, I., and Svatoš, A. 1999. Defense secretion of Prorhinotermes simplex: Toxicity to insecticide susceptible and resistant house fly. J. Chem. Ecol. 25:657–662.CrossRefGoogle Scholar
  15. Moore, B. P. 1969. Biochemical studies in termites, pp. 407–432, in K. Krishna and F. M. Weesner (eds.). Biology of Termites, vol. 1. Academic, New York.Google Scholar
  16. Naya, Y., Prestwich, G. D., and Spanton, S. G. 1982. Sesquiterpenes from termite soldiers: structure of amiteol, a new 5-beta, 7-beta, 10-beta-eudesmane from Amitermes excellens. Tetrahedron Lett. 23:3047–3050.CrossRefGoogle Scholar
  17. Oldham, N. J., and Svatoš, A. 1999. Determination of the double bond position in functionalized monoenes by chemical ionization ion-trap mass spectrometry using acetonitrile as a reagent gas. Rapid Commun. Mass Spectrom. 13:331–336.CrossRefGoogle Scholar
  18. Pasteels, J. M., and Bordereau, C. 1998. Releaser pheromones in termites, pp. 193–215, in R. K. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.). Pheromone Communication in Social Insects: Ants, Wasps, Bees and Termites. Westview, Boulder.Google Scholar
  19. Prestwich, G. D. 1978. Isotrinervi-2[beta]-ol. Structural isomers in the defense secretions of allopatric populations of the termite Trinervitermes gratiosus. Experientia 34:682–684.CrossRefGoogle Scholar
  20. Prestwich, G. D. 1984. Defense mechanisms of termites. Annu. Rev. Entomol. 29:201–232.CrossRefGoogle Scholar
  21. Prestwich, G. D., and Collins, M. S. 1980. A novel enolic beta-ketoaldehyde in the defense secretion of the termite Rhinotermes hispidus. Tetrahedron Lett. 21:5001–5002.CrossRefGoogle Scholar
  22. Prestwich, G. D., and Collins, M. S. 1981a. 3-oxo-(Z)-9-hexadecenal: an unusual enolic beta-keto aldehyde from a termite soldier defense secretion. J. Org. Chem. 46:2383–2385.CrossRefGoogle Scholar
  23. Prestwich, G. D., and Collins, M. S. 1981b. Macrocyclic lactones as the defense substances of the termite genus Armitermes. Tetrahedron Lett. 22:4587–4590.CrossRefGoogle Scholar
  24. Prestwich, G. D., Wiemer, D. F., Meinwald, J., and Clardy, J. 1978. Cubitene: an irregular twelve-membered-ring diterpene from a termite soldier. J. Am. Chem. Soc. 100:2560–2561.CrossRefGoogle Scholar
  25. Prestwich, G. D., Spanton, S. G., Lauher, J. W., and Vrkoč, J. 1980. Structure of 3-alpha-hydroxy-15-rippertene: evidence for 1,2-methyl migration during biogenesis of a tetracyclic diterpene in termites. J. Am. Chem. Soc. 102:6825–6828.CrossRefGoogle Scholar
  26. Quennedey, A., and Deligne, J. 1975. L’arme frontale des soldats de termites (Rhinotermitidae). Insectes Soc. 22:243–267.CrossRefGoogle Scholar
  27. Roisin, Y. 1988. Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera). Zoomorphology 107:339–347.CrossRefGoogle Scholar
  28. Roisin, Y., Everaerts, C., Pasteels, J. M., and Bonnard, O. 1990. Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone in Nasutitermes princeps. J. Chem. Ecol. 16:2865–2875.CrossRefGoogle Scholar
  29. Shellman-Reeve, J. S. 1997. The spectrum of eusociality in termites, pp. 52–93, in J. Choe and B. J. Crespi (eds.). The Evolution of Social Behavior in Insects and Arachnids. Cambridge University Press, Cambridge.Google Scholar
  30. Šobotník, J., Weyda, F., Hanus, R., Kyjaková, P., and Doubský, J. 2004. Ultrastructure of the frontal gland in Prorhinotermes simplex (Isoptera: Rhinotermitidae) and quantity of the defensive substance. Eur. J. Entomol. 101:153–163.Google Scholar
  31. Spanton, S. G., and Prestwich, G. D. 1981. Chemical self-defense by termite workers: prevention of autotoxication in two rhinotermitids. Science 214:1363–1365.PubMedCrossRefGoogle Scholar
  32. Svatoš, A., and Attygalle, A. B. 1997. Characterization of vinyl-substituted, carbon–carbon double bonds by GC/FT-IR analysis. Anal. Chem. 69:1827–1836.PubMedCrossRefGoogle Scholar
  33. Vrkoč, J., and Ubik, K. 1974. 1-Nitro-trans-1-pentadecene as the defensive compound of termites. Tetrahedron Lett. 15:1463–1464.CrossRefGoogle Scholar
  34. Vrkoč, J., Křeček, J., and Hrdý, I. 1978. Monoterpenic alarm pheromones in two Nasutitermes species. Acta Entomol. Bohemoslov. 75:1–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rafal Piskorski
    • 1
  • Robert Hanus
    • 1
  • Soňa Vašíčková
    • 1
  • Josef Cvačka
    • 1
  • Jan Šobotník
    • 1
  • Aleš Svatoš
    • 1
    • 2
  • Irena Valterová
    • 1
    Email author
  1. 1.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPraha 6Czech Republic
  2. 2.Max Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations