Advertisement

Journal of Chemical Ecology

, Volume 33, Issue 7, pp 1456–1466 | Cite as

Phytotoxic Effects of 21 Plant Secondary Metabolites on Arabidopsis thaliana Germination and Root Growth

  • M. J. Reigosa
  • E. Pazos-Malvido
Article

Abstract

This study investigated potential phytotoxic effects on germination and root growth of 21 plant secondary metabolites (sinapinic, syringic, vanillic, ferulic, p-coumaric, chlorogenic, gallic, gentisic, protocatechuic, p-hydroxybenzoic, and trans-cinnamic acids, and eucalyptol, quercetin, vanillin, syringaldehyde, rutin, 2-benzoxazolinone, protocatechualdehyde, tyrosol, juglone, and l-mimosine) in the plant model Arabidopsis thaliana. Eleven of the 21 molecules showed significant inhibitory effects on germination, and 17 inhibited root growth. Inhibitory effects on root growth were more evident when nutrients were not added. We present dose–response curves for germination effects and IC50 values for each compound, along with possible explanations of the observed inhibitory actions in terms of molecular structure.

Keywords

Allelochemicals Arabidopsis thaliana Dose–response curves Germination inhibition Phytotoxicity Root growth inhibition 

References

  1. Aliotta, G., Cafiero, G., and Martínez-Otero, A. 2006. Weed germination, seedling growth and their lesson for allelopathy in agriculture, pp. 285–297, in M. J. Reigosa, N. Pedrol, L. Gonzales (eds.). Allelopathy: A Physiological Process with Ecological Implications. Springer, Netherlands.Google Scholar
  2. Angelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., and Flamini, G. 2003. Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. J. Agric. Food Chem. 51:6158–6164.PubMedCrossRefGoogle Scholar
  3. Baerson, S. R., Sánchez-Moreiras, A., Pedrol-Bonjoch, N., Schulz, M., Kagan, I. A., Agarwal, A. K., Reigosa, M. J., and Duke, S. O. 2005. Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J. Biol. Chem. 280:21867–21881.PubMedCrossRefGoogle Scholar
  4. Baleroni, C. S. S., Ferrarese, M. L. L., Braccini, A. L., Scapim, C. A., and Ferrarese-Filho, O. 2000. Effects of ferulic and p-coumaric acids on canola (Brassica napus L. cv. Hyola 401) seed germination. Seed Sci. Tech. 28:333–340.Google Scholar
  5. Belz, R. G. and Hurle, K. (2004). A novel laboratory screening bioassay for crop seedling allelopathy. J. Chem. Ecol. 30:175–198.PubMedCrossRefGoogle Scholar
  6. Campos, F. M., Couto, J. A., and Hogg, T. A. 2003. Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J. Appl. Microbiol. 94:167–174.PubMedCrossRefGoogle Scholar
  7. Chevalier, F., Pata, M., Nacry, P., Doumas, P., and Rossignol, M. 2003. Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ. 26:1839–1850.CrossRefGoogle Scholar
  8. Chiapusio, G., Sánchez, A. M., Reigosa, M. J., González, L., and Pellisier, F. 1997. Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 23:2445–2453.CrossRefGoogle Scholar
  9. Dayan, F. E., Romagni, J. G., and Duke, S. O 2000. Investigating the mode of action of natural phytotoxins. J. Chem. Ecol. 26:2079–2094.CrossRefGoogle Scholar
  10. Filleur, S., Walch-Liu, P., Gan, Y., and Forde, B, G. 2005. Nitrate and glutamate sensing by plant roots. Biochem. Soc. Trans. 33:283–286.PubMedCrossRefGoogle Scholar
  11. Hoagland, R. E. and Williams, R. D. 2004. Bioassays—useful tools for the study of allelopathy, pp. 315–351, in F. A. Macías et al. (eds.). Allelopathy, Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca-Raton, FL.Google Scholar
  12. Inderjit and Dakshini, K. M. M. 1995. Allelopathic potential of an annual weed, Polygonum monspeliensis, in crops in India. Plant Soil 173:251–257.CrossRefGoogle Scholar
  13. Janovicek, K. J., Vyn, T. J., Voroney, R. P., and Allen, O. B. 1997. Early corn seedling growth response to phenolic acids. Can. J. Plant Sci. 77:391–393.Google Scholar
  14. Jose, S. and Gillespie, A. R. 1998. Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Mer.) growth and physiology. Plant Soil 203:199–205.CrossRefGoogle Scholar
  15. Li, H-H., Inoue, M., Nishimura, H., Mizutami, J., and Tsuzuki, E. 1993. Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J. Chem. Ecol. 19:1775–1787.CrossRefGoogle Scholar
  16. López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M. F, Simpson, J., and Herrera-Estrella, L. 2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129:244–256.PubMedCrossRefGoogle Scholar
  17. Macías, F. A., Castellano, D., and Molinillo, M. J. G. 2000. Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem. 48:2512–2521.PubMedCrossRefGoogle Scholar
  18. Martin, T., Oswald, O., and Graham, I. A. 2002. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol. 128:472–481.PubMedCrossRefGoogle Scholar
  19. Mitchell-Olds, T. 2001. Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol. Evol. 16:693–700.CrossRefGoogle Scholar
  20. Nakai, S., Inoue, Y., and Hosomi, M. 2001. Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Res. 35:1855–1859.PubMedCrossRefGoogle Scholar
  21. Reddy, S. and Rao, S. S. R. 1999. Effect of hydroxy cinnamic acids on growth, nucleic acid, carbohydrate and nicotine content of tobacco (Nicotiana tabacum L.). Indian J. Plant Physiol. 4:167–170.Google Scholar
  22. Reigosa, M. J., Souto, X. C., and González, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Reg. 28:83–89.CrossRefGoogle Scholar
  23. Shimizu, K. K. and Purugganan, M. D. 2005. Evolutionary and ecological genomics of Arabidopsis. Plant Physiol. 138:578–584.PubMedCrossRefGoogle Scholar
  24. Szabo, L. G. 2000. Juglone index: A possibility for expressing allelopathic potential of plant taxa with various life strategies. Acta Bot. Hung. 42:295–305.Google Scholar
  25. Wu, L., Guo, X., and Harivandi, M. A. 1998. Allelopathic effects of phenolic acids detected in buffalograss (Buchloe dactyloides) clippings on growth of annual bluegrass (Poa annua) and buffalograss seedlings. Environ. Exp. Bot. 39:159–167.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Plant Biology and Soil ScienceUniversity of VigoVigoSpain

Personalised recommendations