Journal of Chemical Ecology

, Volume 33, Issue 7, pp 1382–1392 | Cite as

Foreign-language Skills in Rove-Beetles? Evidence for Chemical Mimicry of Ant Alarm Pheromones in Myrmecophilous Pella Beetles (Coleoptera: Staphylinidae)

  • Michael Stoeffler
  • Tanja S. Maier
  • Till Tolasch
  • Johannes L. M. Steidle
Article

Abstract

By using chemical analyses, as well as laboratory and field behavioral tests, we tested the hypothesis that rove beetles of the myrmecophilous genus Pella use alarm pheromone compounds to avert attacks by their host ant Lasius fuliginosus. The secretions of Pella funestus and P. humeralis contain quinones and different aliphatic compounds, mainly undecane and 6-methyl-5-hepten-2-one (sulcatone). The latter two chemicals are also found in L. fuliginosus pheromone glands. Behavioral tests confirmed that undecane serves as an “aggressive alarm”-inducing pheromone in L. fuliginosus, whereas sulcatone most likely is a “panic-alarm”-inducing pheromone. The main tergal-secretion compounds, various quinones and undecane, individually and in mixtures induced aggression in L. fuliginosus workers. When sulcatone was added to these compounds, the space around the odor source was avoided and a reduced number of aggressive acts observed, suggesting that sulcatone blocks the aggression-inducing effect of undecane and the quinones. These results support the hypothesis that Pella beetles mimic alarm pheromones of their hosts. This is a rare example of chemical mimicry in myrmecophilous insects in which chemicals other than cuticular hydrocarbons are used.

Keywords

Pella Zyras Lasius fuliginosus Myrmecophily Alarm pheromones Panic alarm Aggressive alarm Chemical mimicry 6-methyl-5-hepten-2-one Sulcatone 

References

  1. Akino, T. 2002. Chemical camouflage by myrmecophilus beetles Zyras comes (Coleoptera: Staphylinidae) and Diaritiger fossulatus (Coleoptera: Pselaphidae) to be integrated into the nest of Lasius fuliginosus (Hymenoptera: Formicidae). Chemoecology 12:83–89.CrossRefGoogle Scholar
  2. Akino, T., Mochizuki, R., Morimoti, M., and Yamaoka, R. 1996. Chemical camouflage of myrmecophilous cricket Myrmecophilus sp. to be integrated with several ant species. Jpn. J. Appl. Entomol. 40:39–46.Google Scholar
  3. Arthur, C. L. and Pawliszyn, J. 1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62:2145–2148.CrossRefGoogle Scholar
  4. Bernardi, R., Cardani, C., Ghiringhelli, D., Selva, A., Baggini, A., and Pavan, M. 1967. On the components of secretion of mandibular glands of the ant Lasius (Dendrolasius) fuliginosus. Tetrahedron Lett. 40:3893–3896.CrossRefGoogle Scholar
  5. Bhatkar, A. P. and Whitcomb, W. H. 1970. Artificial diet for rearing various species of ants. Fla. Entomol. 54:229–232.Google Scholar
  6. Dettner, K. and Liepert, C. 1994. Chemical mimicry and camouflage. Annu. Rev. Entomol. 39:129–154.CrossRefGoogle Scholar
  7. Duffield, R. M., Brand, J. M., and Blum, M. S. 1977. 6-Methyl-5-hepten-2-one in Formica species: identification and function as an alarmpheromone. Ann. Entomol. Soc. Am. 70:309–310.Google Scholar
  8. Dumpert, K. 1972. Alarmstoffrezeptoren auf der Antenne von Lasius fuliginosus (Latr.) (Hymenoptera, Formicidae). Z. Vgl. Physiol. 76:403–425.CrossRefGoogle Scholar
  9. Elgar, M. A. and Allan, R. A. 2004. Predatory spider mimics aquire colony-specific cuticular hydrocarbons from their ant model prey. Naturwissenschaften 91:143–147.PubMedCrossRefGoogle Scholar
  10. Freude, H., Harde, K. H., and Lohse, G. A. 1974. Die Käfer Mitteleuropas: Band 5. Goecke und Evers Verlag, Krefeld.Google Scholar
  11. Hölldobler, B. and Wilson, E. O. 1990. The Ants. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  12. Hölldobler, B., Möglich, M., and Maschwitz, U. 1981. Myrmecophilic relationship of Pella (Coleoptera: Staphylinidae) to Lasius fuliginosus (Hymenoptera: Formicidae). Psyche 88:347–374.CrossRefGoogle Scholar
  13. Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.PubMedCrossRefGoogle Scholar
  14. Kistner, D. H. 1971. Studies of Japanese myrmecophiles, Part I. The Genera Pella and Falagria (Coleoptera; Staphylinidae) in Entomological Essays to Commemorate the Retirement of Professor K. Yasumatsu, pp. 141–165. Hokurynkan Publ. Co. Ltd., Tokyo.Google Scholar
  15. Kistner, D. H. and Blum, M. S. 1971. Alarm pheromone of Lasius (Dendrolasius) spathebus (Hymenoptera: Formicidae) and its possible mimicry by two species of Pella (Coleoptera: Staphylinidae). Ann. Entomol. Soc. Am. 64:589–594.Google Scholar
  16. Lenoir, A., D’Ettore, P., and Errard, C. 2001. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46:573–599.PubMedCrossRefGoogle Scholar
  17. Maruyama, M. 2006. Revision of the Palearctic species of the myrmecophilous genus Pella (Coleoptera, Staphylinidae, Aleocharinae). National Science Museum Monographs:32.Google Scholar
  18. Maschwitz, U. 1964. Gefahrenalarmstoffe und Gefahrenalarmierung bei sozialen Hymenopteren. Z. Vgl. Physiol. 47:596–655.CrossRefGoogle Scholar
  19. Maschwitz, U. and Hölldobler, B. 1970. Der Kartonnestbau bei Lasius fuliginosus. Z. Vgl. Physiol. 66:176–189.CrossRefGoogle Scholar
  20. Regnier, F. E. and Wilson, E. O. 1971. Chemical communication and "propaganda" in slave-maker ants. Science 172:267–269.PubMedCrossRefGoogle Scholar
  21. Schminke, G. 1978. Einfluss von Temperatur und Photoperiode auf Entwicklung und Diapause einiger Staphylinidae. Pedobiologia 18:1–21.Google Scholar
  22. Seifert, B. 1996. Ameisen: beobachten, bestimmen. Naturbuchverlag, Augsburg.Google Scholar
  23. Steidle, J. L. M. and Dettner, K. 1993. Chemistry and morphology of the tergal gland of free-living adult aleocharinae (Coleoptera: Staphylinidae) and its phylogenetic significance. Syst. Entomol. 18:149–168.Google Scholar
  24. Vane-Wright, R. I. 1976. A unified classification of mimetic resemblances. Biol. J. Linn. Soc. 8:25–56.Google Scholar
  25. Wasmann, E. 1886. Über die Lebensweise einiger Ameisengäste I. Deut. Entomol. Z. 30:49–66.Google Scholar
  26. Wilson, E. O. and Regnier, F. E. 1971. The evolution of the alarm-defense system in the formicine ants. Am. Nat. 105:279–289.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michael Stoeffler
    • 1
  • Tanja S. Maier
    • 1
  • Till Tolasch
    • 1
  • Johannes L. M. Steidle
    • 1
  1. 1.Institut für ZoologieUniversität HohenheimStuttgartGermany

Personalised recommendations