Journal of Chemical Ecology

, Volume 33, Issue 5, pp 1065–1081 | Cite as

Interspecific Variation of Floral Scent Composition in Glochidion and its Association with Host-specific Pollinating Seed Parasite (Epicephala)

Article

Abstract

Trees of the genus Glochidion (Phyllanthaceae) are pollinated by females of Epicephala moths (Gracillariidae) whose larvae consume the seeds of the flowers that they pollinate. Each Epicephala moth species is specific locally to a single host species, although two to four Glochidion hosts often cooccur. To investigate the role of olfactory signals in maintaining the plant−moth specificity, we analyzed floral scent composition of five Glochidion species by using gas chromatography–mass spectrometry (GC-MS) and conducted Y-tube olfactometer bioassays with Epicephala moths and their host flowers. The GC-MS analysis showed that the floral scents of the five Glochidion species are dominated by (R)-(−)- and (S)-(+)-linalool, and (E)- and (Z)-β-ocimene, and that each species produces 6–20 compounds. Transformation of scent profiles by using chord-normalized expected species shared distances and analysis of the data with nonmetric multidimensional scaling showed that floral volatiles of cooccurring Glochidion species can be distinguished by relative chemical composition, especially that of minor compounds. The bioassay with pollinators of Glochidion lanceolatum and Glochidion ruburm further indicated that Epicephala moths are capable of discriminating their hosts by using floral odor. The results suggest that the floral scent of Glochidion is one of the important key signals that mediate the encounters of the species-specific partners in the GlochidionEpicephala mutualism.

Keywords

Bioassay Epicephala Floral scent Glochidion Obligate pollination mutualism Species specificity 

References

  1. Andersson, S. and Dobson, H. E. M. 2003. Antennal responses to floral scents in the butterfly Heliconius melpomene. J. Chem. Ecol. 29:2319–2330.PubMedCrossRefGoogle Scholar
  2. Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot. J. Linn. Soc. 140:129–153.CrossRefGoogle Scholar
  3. Bäckmann, A. C., Bengtsson, M., Borg-Karlsson, A. K., Liblikas, I., and Witzgall, P. 2001. Volatiles from apple (Malus domestica) eliciting antennal responses in female codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae): effect of plant injury and sampling technique. Z. Naturforsch. C 56:262–268.Google Scholar
  4. Borg-Karlson, A. K., Valterova, I., and Nilsson, L. A. 1994. Volatile compounds from flowers of six species in the family Apiaceae: bouquets for different pollinators? Phytochemistry 35:111–119.CrossRefGoogle Scholar
  5. Bossart, J. L. 2003. Covariance of preference and performance on normal and novel hosts in a locally monophagous and locally polyphagous butterfly population. Oecologia 135:477–486.PubMedGoogle Scholar
  6. Clarke, K. R. 1993. Nonparametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18:117–143.CrossRefGoogle Scholar
  7. Cook, J. M. and Rasplus, J. Y. 2003. Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol. 18:241–248.CrossRefGoogle Scholar
  8. Corner, E. J. H. 1965. Check-list of Ficus in Asia and Australasia with keys to identification. Gard. Bull. (Singapore) 21:1–185.Google Scholar
  9. Davies, N. W. 1990. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20 M phases. J. Chromatogr. 503:1–24.CrossRefGoogle Scholar
  10. Forister, M. L. 2004. Oviposition preference and larval performance within a diverging lineage of lycaenid butterflies. Ecol. Entomol. 29:264–272.CrossRefGoogle Scholar
  11. Gallagher, E. D. 1999. COMPAH documentation. http://www.es.umb.edu/edgwebp.htm
  12. Gancel, A. L., Olle, D., Ollitrault, P., Luro, F., and Brillouet, J. M. 2002. Leaf and peel volatile compounds of an interspecific citrus somatic hybrid [Citrus aurantiflolia (Christm.) Swing. + Citrus paradisi MacFaydan]. Flavour Fragr. J. 17:416–424.CrossRefGoogle Scholar
  13. Gerlach, G. and Schill, R. 1991. Composition of orchid scents attracting euglossine bees. Bot. Acta 104:379–391.Google Scholar
  14. Govaerts, R., Frodin, D. G., and Radcliffe-Smith, A. 2000. World checklist and bibliography of Euphorbiaceae. Royal Botanic Gardens, Kew, UK.Google Scholar
  15. Grison-Pigé, L., Bessière, J. M., and Hossaert-Mckey, M. 2002a. Specific attraction of fig-pollinating wasps: Role of volatile compounds released by tropical figs. J. Chem. Ecol. 28:283–295.PubMedCrossRefGoogle Scholar
  16. Grison-Pigé, L., Hossaert-Mckey, M., Greeff, J. M., and Bessière, J. M. 2002b. Fig volatile compounds—a first comparative study. Phytochemistry 61:61–71.PubMedCrossRefGoogle Scholar
  17. Hern, A. and Dorn, S. 1999. Sexual dimorphism in the olfactory orientation of adult Cydia pomonella in response to alpha-farnesene. Entomol. Exp. Appl. 92:63–72.CrossRefGoogle Scholar
  18. Herre, E. A. 1989. Coevolution of reproductive characteristics in 12 species of New World figs and their pollinator wasps. Experientia 45:637–647.CrossRefGoogle Scholar
  19. Herre, E. A. 1996. An overview of studies on a community of Panamanian figs. J. Biogeogr. 23:593–607.CrossRefGoogle Scholar
  20. Herre, E. A. and West, S, A. 1997. Conflict of interest in a mutualism: documenting the elusive fig wasp–seed trade-off. Proc. R. Soc. Lond. B. 264:1501–1507.CrossRefGoogle Scholar
  21. Hossaert-Mckey, M., Gibernau, M., and Frey, J. E. 1994. Chemosensory attraction of fig wasps to substances produced by receptive figs. Entomol. Exp. Appl. 70:185–191.CrossRefGoogle Scholar
  22. Janzen, D. H. 1979. How to be a fig. Annu. Rev. Ecol. Syst. 10:13–51.CrossRefGoogle Scholar
  23. Jürgens, A. and Dötterl, S. 2004. Chemical composition of anther volatiles in Ranunculaceae: genera-specific profiles in Anemone, Aquilegia, Caltha, Pulsatilla, Ranunculus, and Trollius species. Am. J. Bot. 91:1969–1980.Google Scholar
  24. Kato, M., Takimura, A., and Kawakita, A. 2003. An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). Proc. Natl. Acad. Sci. U S A 100:5264–5267.PubMedCrossRefGoogle Scholar
  25. Kawakita, A. and Kato, M. 2006. Assessment of the diversity and species specificity of the mutualistic association between Epicephala moths and Glochidion trees. Mol. Ecol. 15:3567–3581.PubMedCrossRefGoogle Scholar
  26. Kawakita, A., Takimura, A., Terachi, T., Sota, T., and Kato, M. 2004. Cospeciation analysis of an obligate pollination mutualism: Have Glochidion trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillaridae) diversified in parallel? Evolution 58:2201–2214.PubMedGoogle Scholar
  27. Knudsen, J. T. and Tollsten, L. 1993. Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Bot. J. Linn. Soc. 113:263–284.CrossRefGoogle Scholar
  28. Knudsen, J. T., Tollsten, L, and Bergströn, L. G. 1993. Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280.CrossRefGoogle Scholar
  29. Lopez-Vaamonde, C., Dixon, D. J., Cook, J. M., and Rasplus, J. Y. 2002. Revision of the Australian species of Pleistodontes (Hymenoptera: Agaonidae) fig-pollinating wasps and their host–plant associations. Zool. J. Linn. Soc. 136:637–683.CrossRefGoogle Scholar
  30. Machado, C. A., Jousselin, E., Kjellberg, F., Compton, S. G, and Herre, E. A. 2001. Phylogenetic relationships, historical biogeography, and character evolution of fig-pollinating wasps. Proc. R. Soc. Lond. B. 268:685–694.CrossRefGoogle Scholar
  31. Makholela, T. and Manning, J. C. 2006. First report of moth pollination in Struthiola ciliata (Thymelaeaceae) in southern Africa. S. Afr. J. Bot. 72:597–603.CrossRefGoogle Scholar
  32. Minh Tu, N. T., Onishi, Y., Son, U. S., Ogawa, E., Ukeda, H., and Sawamura, M. 2003. Characteristic odour components of Citrus inflata Hort. ex Tanaka (Mochiyu) cold-pressed peel oil. Flavour Fragr. J. 18:454–459.CrossRefGoogle Scholar
  33. Miyake, T., Yamaoka, R., and Yahara T. 1998. Floral scents of hawkmoth-pollinated flowers in Japan. J. Plant. Res. 111:199–205.CrossRefGoogle Scholar
  34. Molbo, D., Machado, C. A., Sevenster, J. G., Keller, L., and Herre, E. A. 2003. Cryptic species of fig-pollinating wasps: implications for the evolution of the fig–wasps mutualism, sex allocation, and precision of adaptation. Proc. Natl. Acad. Sci. U S A 100:5867–5872.PubMedCrossRefGoogle Scholar
  35. Nefdt, R. J C. and Compton, S. G. 1996. Regulation of seed and pollinator production in the fig–fig wasp mutualism. J. Anim. Ecol. 65:170–182.CrossRefGoogle Scholar
  36. Pellmyr, O. 2003. Yuccas, yucca moths, and coevolution: a review. Ann. Mo. Bot. Gard. 90:33–55.CrossRefGoogle Scholar
  37. Pellmyr, O., Tang, W., Groth, I., Bergstrom, G., and Thien, L. B. 1991. Cycad cone and angiosperm floral volatiles inferences for the evolution of insect pollination. Biochem. Syst. Ecol. 19:623–628.CrossRefGoogle Scholar
  38. Pettersson, S., Ervik, F., and Knudsen, J. K. 2004. Floral scent of bat-pollinated species: West Africa vs. the New World. Biol. J. Linn. Soc. 82:161–168.CrossRefGoogle Scholar
  39. Proctor, M., Yeo, P., and Lack, A. 1996. The natural history of pollination. Timber Press, Portland.Google Scholar
  40. Raguso, R. A. and Pellmyr, O. 1998. Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos 81:238–254.CrossRefGoogle Scholar
  41. Raguso, R. A., Light, D. M., and Pichersky, E. 1996. Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J. Chem. Ecol. 22:1735–1765.CrossRefGoogle Scholar
  42. Raguso, R. A., Levin, R. A., Foose, S. E., Holmberg, M. W., and Mcdade, L. A. 2003. Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284.PubMedCrossRefGoogle Scholar
  43. Sagrero-Nieves, L., Bartley, J. P., Espinosa, B. G., Domingues, X. A., and Verde S. J. 1997. Essential oil composition of Aristolochia brevipes Benth. Flavour Fragr. J. 12:401–403.CrossRefGoogle Scholar
  44. Singer, M. C., Ng, D., and Thomas, C. D. 1988. Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution 42:977–985.CrossRefGoogle Scholar
  45. Song, Q., Yang, D., Zhang, G., and Yang, C. 2001. Volatiles from Ficus hispida and their attractiveness to fig wasps. J. Chem. Ecol. 27:1929–1942.PubMedCrossRefGoogle Scholar
  46. Svensson, G. P., Hickman, M. O., Bartram, S., Boland, W., Pellmyr, O., and Raguso, R. A. 2005. Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae). Am. J. Bot. 92:1624–1631.Google Scholar
  47. Traxler, M. A. and Joern, A. 1999. Performance tradeoffs for two hosts within and between populations of the oligophagous grasshopper Hesperotettix viridis (Acrididae). Oikos 87:239–250.CrossRefGoogle Scholar
  48. Trueblood, D. D., Gallagher, E. D., and Gould, D. M. 1994. Three stages of seasonal succession on the Savin Hill Cove mudflat, Boston Harbor. Limnol. Oceanogr. 39:1440–1454.CrossRefGoogle Scholar
  49. Via, S. 1986. Genetic covariance between oviposition preference and larval performance in an insect herbivore. Evolution 40:778–785.CrossRefGoogle Scholar
  50. Ware, A. B. and Compton, S. G. 1994. Responses of fig wasps to host plant volatile cues. J. Chem. Ecol. 20:785–802.CrossRefGoogle Scholar
  51. Weiblen, G. D. 2002. How to be a fig wasp. Annu. Rev. Ecol. Syst. 47:299–330.Google Scholar
  52. Weiblen, G. D. 2004. Correlated evolution in fig pollination. Syst. Biol. 53:128–139.PubMedCrossRefGoogle Scholar
  53. Weiblen, G. D. and Bush, G. L. 2002. Speciation in fig pollinators and parasites. Mol. Ecol. 11:1573–1578.PubMedCrossRefGoogle Scholar
  54. Weiblen, G. D., Yu, D. W., and Stuart, S. A. 2001. Pollination and parasitism in functionally dioecious figs. Proc. R. Soc. Lond. B. 268:651–659.CrossRefGoogle Scholar
  55. Yokoyama, J. 2003. Cospeciation of figs and fig-wasps: a case study of endemic species pairs in the Ogasawara Islands. Popul. Ecol. 45:249–256.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations