Journal of Chemical Ecology

, Volume 33, Issue 5, pp 1013–1023

Foliar Phenolics are Differently Associated with Epirrita autumnata Growth and Immunocompetence

  • Sanna Haviola
  • Lauri Kapari
  • Vladimir Ossipov
  • Markus J. Rantala
  • Teija Ruuhola
  • Erkki Haukioja


The quality of available food may affect insect herbivores directly (via growth and survivorship) and/or indirectly (by modifying insect vulnerability to parasitoids and pathogens). We examined the relationship between different phenolic compounds, belonging to various phenolic groups, in Betula pubescens spp. czerepanovii (mountain birch) foliage and the larval performance of the geometrid Epirrita autumnata (autumnal moth). Direct effects on insect performance were described by pupal weight, developmental rate, and survivorship; indirect effects were described by the encapsulation rate of an implant inserted into the insect hemocoel, a commonly used way to describe insect immune defense. We found profound differences in the effects of different phenolic categories: several individual hydrolyzable tannins were associated positively with larval performance but negatively with level of immune defense, whereas flavonoid glycosides were inversely related to larval survival but showed no association with the larvae immune defense.


Secondary compounds Tritrophic interactions Direct and indirect defense Immunocompetence Encapsulation 


  1. Agrawal, A. A. 1999. Induced responses to herbivory in wild radish: Effects on several herbivores and plant fitness. Ecology 80:1713.Google Scholar
  2. Auerbach, M. and Alberts, J. D. 1992. Occurrence and performance of the aspen blotch miner, Phyllonorycter salicifoliella, on three host-tree species. Oecologia 89:1.CrossRefGoogle Scholar
  3. Ayres, M. P., Clausen, T. P., Maclean, S. F. Jr., Redman, A. M., and Reichardt, P. B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696.CrossRefGoogle Scholar
  4. Benz, G. 1974. Negative rückkoppelung durch raum—und nahrungskonkurrenz sowie zyklishe veränderung der nahrungsgrundlage als regelprinzip in der populationsdynamik des grauen lärchenwiklers, Zeiraphera diniana (guenée) (Lep. Tortricidae). Z. Angew. Entomol. 76:196.Google Scholar
  5. Berryman, A. A. 2002. Population Cycles. The Case for Trophic Interactions. Oxford University Press, New York.Google Scholar
  6. Bjorkman, C. and Larsson, S. 1991. Pine sawfly defense and variation in host plant resin acids—a trade-off with growth. Ecol. Entomol. 16:283.Google Scholar
  7. Bylund, H. 1995. Long-term interactions between the autumnal moth and mountain birch: The roles of resources, competition. natural enemies, and weather. Dissertation, Sveriges Lantbruks Universitet.Google Scholar
  8. Cook, S. P., Webb, R. E., Podgwaite, J. D., and Reardon, R. C. 2003. Increased mortality of gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) exposed to gypsy moth nuclear polyhedrosis virus in combination with the phenolic glycoside salicin. J. Econ. Entomol. 96:1662.PubMedCrossRefGoogle Scholar
  9. Cory, J. S. and Hoover, K. 2006. Plant-mediated effects in insect-pathogen interactions. Tree 21:278.PubMedGoogle Scholar
  10. Dixon, P. M. 2001. The bootstrap and the jackknife—describing the precision of ecological indices, pp. 267, in S. M. Scheiner and J. Gurevitch (eds.). Design and Analysis of Ecological Experiments. Chapman Hall, New York.Google Scholar
  11. Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565.CrossRefGoogle Scholar
  12. Felton, G. W., Duffey, S. S., Vail, P. V., Kaya, H. K., and Manning, J. 1987. Interaction of nuclear polyhedrosis virus with catechols: Potential incompatibility for host-plant resistance against noctuid larvae. J. Chem. Ecol. 13:947.CrossRefGoogle Scholar
  13. Gallardo, F., Boethel, D. J., Fuxa, J. R., and Richter, A. 1990. Susceptibility of Heliothis zea (Boddie) larvae to Nomuraea rileyi (Farlow) Samson: Effects of α-tomatine at the third trophic level. J. Chem. Ecol. 16:1751.CrossRefGoogle Scholar
  14. Gorman, M. J., Cornel, A. J., Collins, F. H., and Paskewitz, S. M. 1996. A shared genetic mechanism for melanotic encapsulation of CM-Sephadex beads and the malaria parasite, Plasmodium cynomolgi B, in the mosquito Anopheles gambiae. Exp. Parasitol. 84:380.PubMedCrossRefGoogle Scholar
  15. Haukioja, E. 2003. Putting the insect into the birch–insect interaction. Oecologia 136:161.PubMedCrossRefGoogle Scholar
  16. Haukioja, E. 2005a. Plant defenses and population fluctuations of forest defoliators: Mechanism-based scenarios. Ann. Zool. Fenn. 42:313.Google Scholar
  17. Haukioja, E. 2005b. Tree defenses against insects, pp. 279, in E. Bent and S. Tuzun (eds.). Multigenic and Induced Systemic Resistance in Plants. Kluwer, Academic Publishers, New York.Google Scholar
  18. Haukioja, E. and Neuvonen, S. 1985. Induced long-term resistance of birch foliage against defoliators: Defensive or incidental? Ecology 66:1303.CrossRefGoogle Scholar
  19. Haukioja, E., Ossipov, V., and Lempa, K. 2002. Interactive effects of leaf maturation and phenolics on consumption and growth of a geometrid moth. Entomol. Exp. Appl. 104:125.CrossRefGoogle Scholar
  20. Havill, N. P. and Raffa, K. F. 2000. Compound effects of induced plant responses on insect herbivores and parasitoids: Implications for tritrophic interactions. Ecol. Entomol. 25:171.CrossRefGoogle Scholar
  21. Hilker, M. and Schulz, S. 1994. Composition of larval secretion of Chrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host-plant. J. Chem. Ecol. 20:1075.CrossRefGoogle Scholar
  22. Holton, M. K., Lindroth, R. L., and Nordheim, E. V. 2003. Foliar quality influences tree-herbivore-parasitoid interactions: Effects of elevated CO2, O3, and plant genotype. Oecologia 137:233.PubMedCrossRefGoogle Scholar
  23. Hoover, K., Yee, J. L., Schultz, C. M., Rocke, D. M., Hammock, B. D., and Duffey, S. S. 1998. Effects of plant identity and chemical constituents on the efficacy of a baculovirus against Heliothis virescens. J. Chem. Ecol. 24:221–252.CrossRefGoogle Scholar
  24. Hunter, M. D. and Schultz, J. C. 1993. Induced plant defenses breached? phytochemical induction protects an herbivore from disease. Oecologia 94:195.CrossRefGoogle Scholar
  25. Kaitaniemi, P., Ruohomäki, K., Ossipov, V., Haukioja, E., and Pihlaja, K. 1998. Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia 116:182.CrossRefGoogle Scholar
  26. Kallio, P. and Mäkinen, Y. 1978. Vascular flora of Inari Lapland. 4. Betulaceae. Rep. Kevo Subarctic Res. Stat. 14:38.Google Scholar
  27. Kapari, L., Haukioja, E., Rantala, M. J., and Ruuhola, T. 2006. Defoliating insect immune defense interacts with induced plant defense during a population outbreak. Ecology 87:291.PubMedCrossRefGoogle Scholar
  28. Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. The University Chicago Press, Chicago.Google Scholar
  29. Kause, A., Ossipov, V., Haukioja, E., Lempa, K., Hanhimäki, S., and Ossipova, S. 1999a. Multiplicity of biochemical factors determining quality of growing birch leaves. Oecologia 120:102.CrossRefGoogle Scholar
  30. Kause, A., Saloniemi, I., Haukioja, E., and Hanhimäki, S. 1999b. How to become large quickly: Quantitative genetics of growth and foraging in a flush feeding lepidopteran larva. J. Evol. Biol. 12:471.CrossRefGoogle Scholar
  31. Keating, S. T., Yendol, W. G., and Schultz, J. C. 1988. Relationship between susceptibility of gypsy moth larvae (Lepidoptera: Lymantriidae) to a baculovirus and host plant foliage constituents. Environ. Entomol. 17:952.Google Scholar
  32. Keating, S. T., Hunter, M. D., and Schultz, J. C. 1990. Leaf phenolic inhibition of gypsy moth nuclear polyhedrosis virus. J. Chem. Ecol. 16:1445.CrossRefGoogle Scholar
  33. Klemola, T., Ruohomäki, K., Andersson, T., and Neuvonen, S. 2004. Reduction in size and fecundity of the autumnal moth, Epirrita autumnata, in the increase phase of a population cycle. Oecologia 141:47.PubMedCrossRefGoogle Scholar
  34. Lindroth, R. L., Hwang, S., and Osier, T. L. 1999. Phytochemical variation in quaking aspen: Effects on gypsy moth susceptibility to nuclear polyhedrosis virus. J. Chem. Ecol. 25:1331.CrossRefGoogle Scholar
  35. Ludlum, C. T., Felton, G. W., and Duffey, S. S. 1991. Plant defenses: Chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thuringiensis subsp. kurstaki to Heliothis zea. J. Chem. Ecol. 17:217.CrossRefGoogle Scholar
  36. Ode, P. J., Berenbaum, M. R., Zangerl, A. R., and Hardy, I. C. W. 2004. Host plant, host plant chemistry and the polyembryonic parasitoid Copidosoma sosares: Indirect effects in a tritrophic interaction. Oikos 104:388.CrossRefGoogle Scholar
  37. Ojala, K., Julkunen-Tiitto, R., Lindström, L., and Mappes, J. 2005. Diet affects the immune defence and life-history traits of an arctiid moth Parasemia plantaginis. Evol. Ecol. Res. 7:1153.Google Scholar
  38. Ossipov, V., Haukioja, E., Ossipova, S., Hanhimäki, S., and Pihlaja, K. 2001. Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem. Syst. Ecol. 29:223.PubMedCrossRefGoogle Scholar
  39. Ossipova, S., Ossipov, V., Haukioja, E., Loponen, J., and Pihlaja, K. 2001. Proanthocyanidins from mountain birch leaves: Quantification and properties. Phytochem. Anal. 12:128.PubMedCrossRefGoogle Scholar
  40. Parry, D., Herms, D. A., and Mattson, W. J. 2003. Responses of an insect folivore and its parasitoids to multiyear experimental defoliation of aspen. Ecology 84:1768.CrossRefGoogle Scholar
  41. Paskewitz, S. and Riehle, M. A. 1994. Response of plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated Sephadex beads. Dev. Comp. Immunol. 18:369.PubMedCrossRefGoogle Scholar
  42. Rantala, M. J. and Roff, D. A. 2005. An analysis of trade-offs in immune function, body size and development time in the Mediterranean field cricket, Gryllus bimaculatus. Funct. Ecol. 19:323.CrossRefGoogle Scholar
  43. Riipi, M., Ossipov, V., Lempa, K., Haukioja, E., Koricheva, J., Ossipova, S., and Pihlaja, K. 2002. Seasonal changes in birch leaf chemistry: Are there trade-offs between leaf growth and accumulation of phenolics? Oecologia 130:380.CrossRefGoogle Scholar
  44. Riipi, M., Haukioja, E., Lempa, K., Ossipov, V., Ossipova, S., and Pihlaja, K. 2004. Ranking of individual mountain birch trees in terms of leaf chemistry: seasonal and annual variation. Chemoecology 14:31.CrossRefGoogle Scholar
  45. Roth, S., Knorr, C., and Lindroth, R. L. 1997. Dietary phenolics affects performance of the gypsy moth (Lepidoptera: Lymantriidae) and its parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Environ. Entomol. 26:668.Google Scholar
  46. Ruohomäki, K. 1994. Larval parasitism in outbreaking and non-outbreaking populations of Epirrita autumnata (Lepidopteran, Geometridae). Entomol. Fenn. 5:27.Google Scholar
  47. Ruohomäki, K., Tanhuanpää, M., Ayres, M. P., Kaitaniemi, P., Tammaru, T., and Haukioja, E. 2000. Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): Grandiose theory and tedious practice. Popul. Ecol. 42:211.CrossRefGoogle Scholar
  48. Salminen, J., Ossipov, V., Loponen, J., Haukioja, E., and Pihlaja, K. 1999. Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A. 864:283.CrossRefGoogle Scholar
  49. Salminen, J., Ossipov, V., Haukioja, E., and Pihlaja, K. 2001. Seasonal variation in the content of hydrolysable tannins in leaves of Betula pubescens. Phytochemistry 57:15.PubMedCrossRefGoogle Scholar
  50. Sas Institute. 1990. SAS/STAT User’s Guide, 6th Version. SAS Institute, Cary, North Carolina, USA.Google Scholar
  51. Tenow, O. 1972. The outbreaks of Oporinia autumnata Bkh. and Operophtera spp. (Lep.; Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968. Dissertation, University of Uppsala.Google Scholar
  52. Vainio, L., Hakkarainen, H., Rantala, M. J., and Sorvari, J. 2004. Individual variation in immune function in the ant Formica exsecta; effects of the nest, body size and sex. Evol. Ecol. 18:75.CrossRefGoogle Scholar
  53. Young, S. Y., Yang, J. G., and Felton, G. W. 1995. Inhibitory effects of dietary tannins on the infectivity of a nuclear polyhedrosis virus to Helicoverpa zea (Noctuidae: Lepidoptera). Biol. Cont. 5:145.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sanna Haviola
    • 1
  • Lauri Kapari
    • 1
  • Vladimir Ossipov
    • 2
  • Markus J. Rantala
    • 1
  • Teija Ruuhola
    • 1
  • Erkki Haukioja
    • 1
  1. 1.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Department of ChemistryUniversity of TurkuTurkuFinland

Personalised recommendations