Journal of Chemical Ecology

, Volume 33, Issue 4, pp 749–765 | Cite as

Inter- and Intraspecific Variation in Floral Scent in the Genus Salix and its Implication for Pollination

  • Ulrike Füssel
  • Stefan Dötterl
  • Andreas Jürgens
  • Gregor Aas


The floral scent composition of 32 European and two Asian Salix L. species (Salicaceae) was analyzed. Intra- and interspecific variation was compared for a subset of 8 species. All Salix species are dioecious and floral scent was collected from both male and female individuals by using a dynamic headspace MicroSPE method, and analyzed by GC-MS. A total of 48 compounds were detected, most of them being isoprenoids and benzenoids. Commonly occurring compounds included trans-β-ocimene, cis-β-ocimene, benzaldehyde, d-limonene, α-pinene, cis-3-hexenyl aceatate, linalool, 1,4-dimethoxybenzene, and β-pinene. Two compounds, 1,4-dimethoxybenzene and trans-β-ocimene, were responsible for most of the interspecific variation. In a subset of eight extensively sampled species, six had a characteristic floral scent composition; half of the pairwise species comparisons confirmed significant differences. In three of these eight species, intraspecific variability could be explained by sex differences. Variation in Salix floral scent may provide specific signals that guide pollinators and thus contribute to the reproductive isolation of compatible and cooccurring species.


Dioecy Floral scent GC-MS Intraspecific variation Interspecific variation Salix Salicaceae 



Parts of the study were supported by the German Research Foundation (Research Training Group 678). The authors thank F. Beyer and I. Schäffler for floral scent collection, and A. Lieflaender, A. Reuter, M. Suckling, T. Witt, and two anonymous reviewers for valuable comments on the manuscript.


  1. Adams, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured Publishing Corporation, Carol Stream, Illinois USA.Google Scholar
  2. Adler, L. S. 2000. The ecological significance of toxic nectar. Oikos 91:409–420.CrossRefGoogle Scholar
  3. Andersen, R. A., Hamiltonkemp, T. R., Loughrin, J. H., Hughes, C. G., Hildebrand, D. F., and Sutton, T. G. 1988. Green leaf headspace volatiles from Nicotiana tabacum lines of different trichome morphology. J. Agric. Food Chem. 36:295–299.CrossRefGoogle Scholar
  4. Andersson, S. 2003. Antennal responses to floral scents in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae). Chemoecology 13:13–20.CrossRefGoogle Scholar
  5. Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot. J. Linn. Soc. 140:129–153.CrossRefGoogle Scholar
  6. Argus, G. W. 1974. Experimental study of hybridization and pollination in Salix (willow). Can. J. Bot. (Rev. Can. Bot.) 52:1613–1619.Google Scholar
  7. Argus, G. W. 1997. Infrageneric Classification of Salix (Salicaceae) in the New World. Systematic Botany Monographs. American Society of Plant Taxonomists, USA.Google Scholar
  8. Ashman, T. L., Bradburn, M., Cole, D. H., Blaney, B. H., and Raguso, R. A. 2005. The scent of a male: the role of floral volatiles in pollination of a gender dimorphic plant. Ecology 86:2099–2105.Google Scholar
  9. Baker, H. G. 1976. “Mistake” pollination as a reproductive system with special reference to the Caricaceae. In J. Burley and B. T. Styles (eds.). Tropical trees: variation, breeding system and conservation (pp. 161–169). Academic Press, London, UK.Google Scholar
  10. Bischoff, I., Feltgen, K., and Breckner, D. 2003. Foraging strategy and pollen preferences of Andrena vaga (Panzer) and Colletes cunicularius (L.) (Hymenoptera:Apidae). J. Hymenopt. Res. 12:220–237.Google Scholar
  11. Boesch, D. F. 1977. Application of Numerical Classification in Ecological Investigations of Water Pollution. Special Scientific Report, Institute of Marine Science, Virginia, Virginia.Google Scholar
  12. Borg, I. and Lingoes, J. 1987. Multidimensional Similarity Structure Analysis. Springer Verlag, Berlin.Google Scholar
  13. Chittka, L. and Thompson, J. D. 2001. Cognitive Ecology of Pollination—Animal Behavior and Floral Evolution. Cambridge University Press, Cambridge.Google Scholar
  14. Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Bot. 18:117–143.Google Scholar
  15. Clarke, K. R. and Warwick, R. M. 2001. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 216:265–278.Google Scholar
  16. Cunningham, J. P., Moore, C. J., Zalucki, M. P., and West, S. A. 2004. Learning, odour preference and flower foraging in moths. J. Exp. Biol. 207:87–94.PubMedCrossRefGoogle Scholar
  17. Dorn, R. D. 1976. Synopsis of American Salix. Can. J. Bot. (Rev. Can. Bot.) 54:2769–2789.Google Scholar
  18. Dötterl, S., Füssel, U., Jürgens, A., and Aas, G. 2005a. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol. 31:2993–2998.PubMedCrossRefGoogle Scholar
  19. Dötterl, S., Wolfe L. M., and Jürgens, A. 2005b. Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213.PubMedCrossRefGoogle Scholar
  20. Dötterl, S., Jürgens, A., Seifert, K., Laube, T., Weissbecker, B., and Schutz, S. 2006. Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol. 169:707–718.PubMedCrossRefGoogle Scholar
  21. Elmqvist, T., Agren, J., and Tunlid, A. 1988. Sexual dimorphism and between-year variation in flowering, fruit set and pollinator behaviour in a boreal willow. Oikos 53:58–66.CrossRefGoogle Scholar
  22. Galizia, C. G., Kunze, J., Gumbert, A., Borg-Karlson, A.-K., Sachse, S., Markl, C., and Menzel, R. 2004. Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behav. Ecol. 16:159–168.CrossRefGoogle Scholar
  23. Grison-Pigé, L., Bessiére, J.-M., and Hossaert-Mckey, M. 2002. Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs. J. Chem. Ecol. 28:283–295.PubMedCrossRefGoogle Scholar
  24. Haynes, K. F., Zhao, J. Z., and Latif, A. 1991. Identification of floral compounds from Abelia grandiflora that stimulate upwind flight in cabbage-looper moths. J. Chem. Ecol. 17:637–646.CrossRefGoogle Scholar
  25. Hemborg, Å. M. and Bond, W. J. 2005. Different rewards in female and male flowers can explain the evolution of sexual dimorphism in plants. Bot. J. Linn. Soc. 85:97–109.CrossRefGoogle Scholar
  26. Honda, K., Omura, H., and Hayashi, N. 1998. Identification of floral volatiles from Ligustrum japonicum that stimulate flower-visiting by cabbage butterfly, Pieris rapae. J. Chem. Ecol. 24:2167–2180.CrossRefGoogle Scholar
  27. Howse, E. P. 2003. Insect attractant. European Patent Specification EP 0838998 B1.Google Scholar
  28. Karrenberg, S., Kollmann, J., and Edwards, P. J. 2002. Pollen vectors and inflorescence morphology in four species of Salix. Plant Syst. Evol. 235:181–188.CrossRefGoogle Scholar
  29. Katoh, N., Goto, N., and Iizumi, S. 1985. Sugar composition of nectar in flowers of Salix species. Sci. Rep. Tohoku Univ., Ser. 4. Biol. 39:45–52.Google Scholar
  30. Kay, Q. O. N. 1985. Nectar from willow catkins as a food source for blue tits. Bird Study 32:40–44.CrossRefGoogle Scholar
  31. Knudsen, J. T. 2002. Variation in floral scent composition within and between populations of Geonoma macrostachys (Arecaceae) in the western Amazon. Am. J. Bot. 89:1772–1778.Google Scholar
  32. Knudsen, J. T. and Tollsten, L. 1993. Trends in floral scent chemistry in pollination syndromes—floral scent composition in moth-pollinated taxa. Bot. J. Linn. Soc. 113:263–284.CrossRefGoogle Scholar
  33. Knudsen, J. T., Eriksson, R., Gershenzon, J., and Ståhl, B. 2006. Diversity and distribution of floral scent. Bot. Rev. 72:1–120.CrossRefGoogle Scholar
  34. Lautenschlager-Fleury, D. and Lautenschlager-Fleury E. 1994. Die Weiden von Mittel-und Nordeuropa. Birkhäuser, Basel, Boston, Berlin.Google Scholar
  35. Mant, J., Peakall, R., and Schiestl, F. P. 2005. Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys? Evolution 59:1449–1463.PubMedCrossRefGoogle Scholar
  36. Mookherjee, B. E., Trenkle, R. W., and Wilson, R. A. 1990. The chemistry of flowers, fruits and species: live vs. dead a new dimension in fragrance research. Pure Appl. Chem. 62:1357–1364.Google Scholar
  37. Mosseler, A. 1989. Interspecific pollen-pistil incongruity in Salix. Can. J. For. Res. (Rev. Can. Rech. For.) 19:1161–1168.Google Scholar
  38. Mosseler, A. 1990. Hybrid performance and species crossability relationships in willows (Salix). Can. J. Bot. (Rev. Can. Bot.) 68:2329–2338.Google Scholar
  39. Mosseler, A. and Papadopol, C. S. 1989. Seasonal isolation as a reproductive barrier among sympatric Salix species. Can. J. Bot. (Rev. Can. Bot.) 67:2563–2570.Google Scholar
  40. Mosseler, A. and Zsuffa, L. 1989. Sex expression and sex-ratios in intraspecific and interspecific hybrid families of Salix L. Silvae Genet. 38:12–17.Google Scholar
  41. Omura, H., Honda, K., and Hayashi, N. 1999. Chemical and chromatic bases for preferential visiting by the cabbage butterfly, Pieris rapae, to rape flowers. J. Chem. Ecol. 25:1895–1906.CrossRefGoogle Scholar
  42. Palme, A. E., Semerikov, V., and Lascoux, M. 2003. Absence of geographical structure of chloroplast DNA variation in sallow, Salix caprea L. Heredity 91:465–474.PubMedCrossRefGoogle Scholar
  43. Pare, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121:325–331.PubMedCrossRefGoogle Scholar
  44. Peters, R. J. B., Duivenbode, J., Duyzer, J. H., and Verhagen, H. L. M. 1994. The determination of terpenes in forest air. Atmos. Environ. 28:2413–2419.CrossRefGoogle Scholar
  45. Raguso, R. A., Schlumpberger, B. O., Kaczorowski, R. L., and Holtsford, T. P. 2006. Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes. Phytochemistry 67:1931–1942.PubMedCrossRefGoogle Scholar
  46. Rechinger, K. H. 1992. Salix taxonomy in Europe—problems, interpretations, observations. Proc. R Soc. Edinb. 98:1–12.Google Scholar
  47. Rothmaler, W. 2002. Exkursionsflora von Deutschland / Gefäßpflanzen: Kritischer Band. Spektrum Akademischer Verlag, Heidelberg, Berlin, Germany.Google Scholar
  48. Ruther, J. 2000. Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography mass spectrometry. J. Chromatogr. A 890:313–319.PubMedCrossRefGoogle Scholar
  49. Sacchi, C. F. and Price, P. W. 1988. Pollination of the arroyo willow, Salix lasiolepis—role of insects and wind. Am. J. Bot. 75:1387–1393.CrossRefGoogle Scholar
  50. Salick, J. and Pfeffer, E. 1999. The interplay of hybridization and clonal reproduction in the evolution of willows—experiments with hybrids of S. eriocephala [R] & S. exigua [X] and S. eriocephala & S. petiolaris [P]. Plant Ecol. 141:163–178.CrossRefGoogle Scholar
  51. Skvortsov, A. K. 1999. Willows of Russia and Adjacent Countries—Taxonomical and Geographical Revision, Joensuu, Finnland.Google Scholar
  52. Sørensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. K. Dan. Vidensk. Selsk. Biol. Skr. 5:1–34.Google Scholar
  53. Svensson, G. P., Hickman, M. O., Bartram, S., Boland, W., Pellmyr, O., and Raguso, R. A. 2005. Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae). Am. J. Bot. 92:1624–1631.Google Scholar
  54. Tholl, D., Boland, W., Hansel, A., Loreto, F., Rose, U. S. R., and Schnitzler, J. P. 2006. Practical approaches to plant volatile analysis. Plant J. 45:540–560.PubMedCrossRefGoogle Scholar
  55. Tollsten, L. and Knudsen, J. T. 1992. Floral scent in dioecious Salix (Salicaceae)—a cue determining the pollination system. Plant Syst. Evol. 182:229–237.CrossRefGoogle Scholar
  56. Totland, O. and Sottocornola, M. 2001. Pollen limitation of reproductive success in two sympatric alpine willows (Salicaceae) with contrasting pollination strategies. Am. J. Bot. 88:1011–1015.CrossRefGoogle Scholar
  57. Triest, L., Degreef, B., Debondt, R., Van Den Bossche, D., and Dhaeseleer, M. 1997. Use of RAPD markers to estimate hybridization in Salix alba and Salix fragilis. Belg. J. Bot. 129:140–148.Google Scholar
  58. Triest, L., De Greef, B., Vermeersch, S., Van Slycken, J., and Coart, E. 1999. Genetic variation and putative hybridization in Salix alba and S. fragilis (Salicaceae): evidence from allozyme data. Plant Syst. Evol. 215:169–187.CrossRefGoogle Scholar
  59. Van Der Werf, F., Cappellato, R., and Meeuse, A. D. J. 1982. Entomophily in Salix II: efficacy and flower constancy of insects visiting some willows and sallows. Beitr. Biol. Pflanz. 56:105–116.Google Scholar
  60. Ventura, M. U., Martins, M. C., and Pasini, A. 2000. Responses of Diabrotica speciosa and Cerotoma arcuata tingomariana (Coleoptera : Chrysomelidae) to volatile attractants. Fla. Entomol. 83:403–410.CrossRefGoogle Scholar
  61. Vroege, P. W. and Stelleman, P. 1990. Insect and wind pollination in Salix repens L. and Salix caprea L. Isr. J. Bot. 39:125–132.Google Scholar
  62. Whitman, D. W. and Eller, F. J. 1990. Parasitic wasps orient to green leaf volatiles. Chemoecology 1:69–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ulrike Füssel
    • 1
  • Stefan Dötterl
    • 2
  • Andreas Jürgens
    • 3
  • Gregor Aas
    • 1
  1. 1.Ecological–Botanical GardenUniversity of BayreuthBayreuthGermany
  2. 2.Department of Plant SystematicsUniversity of BayreuthBayreuthGermany
  3. 3.HortResearchCanterbury Research CentreLincolnNew Zealand

Personalised recommendations