Journal of Chemical Ecology

, Volume 33, Issue 4, pp 669–681 | Cite as

Systemin Regulates Both Systemic and Volatile Signaling in Tomato Plants

  • G. Corrado
  • R. Sasso
  • M. Pasquariello
  • L. Iodice
  • A. Carretta
  • P. Cascone
  • L. Ariati
  • M. C. Digilio
  • E. Guerrieri
  • R. Rao
Article

Abstract

The prevailing reaction of plants to pest attack is the activation of various defense mechanisms. In tomato, several studies indicate that an 18 amino acid (aa) peptide, called systemin, is a primary signal for the systemic induction of direct resistance against plant-chewing pests, and that the transgenic expression of the prosystemin gene (encoding the 200 aa systemin precursor) activates genes involved in the plant response to herbivores. By using a combination of behavioral, chemical, and gene expression analyses, we report that systemin enhances the production of bioactive volatile compounds, increases plant attractivity towards parasitiod wasps, and activates genes involved in volatile production. Our data imply that systemin is involved in the systemic activation of indirect defense in tomato, and we conclude that a single gene controls the systemic activation of coordinated and associated responses against pests.

Keywords

Prosystemin Volatile Plant–insect interaction Gene expression Indirect defense 

Notes

Acknowledgments

We thank Clarence Ryan (Institute of Biological Chemistry, Washington State University) for providing the seeds and useful suggestions during manuscript preparation and Adele Cataldo for technical support. This work was supported by Ministero dell’Università e Ricerca Scientifica (PRIN 2004, MIUR Progetto n. 32 Regioni Obiettivo 1).

References

  1. Alborn, T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.CrossRefGoogle Scholar
  2. Alfano, G., Vitiello, C., Caccioppoli, C., Caramico, T., Carola, A., Szego, M. J., McInnes, R. R., Auricchio, A., and Banfi, S. 2005. Natural antisense transcripts associated with genes involved in eye development. Hum. Mol. Genet. 14:913–923.PubMedCrossRefGoogle Scholar
  3. Ament, K., Kant, M. R., Sabelis, M. W., Haring, M. A., and Schuurink, R. C. 2004. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol. 135:2025–2037.PubMedCrossRefGoogle Scholar
  4. Bergey, D. R., Hoi, G. A., and Ryan, C. A. 1996. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc. Natl. Acad. Sci. USA 93:12053–12058.PubMedCrossRefGoogle Scholar
  5. Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., Matthes, M., Napier, J. A., Pettersson, J., Pickett, J. A., et al. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl. Acad. Sci. USA 97:9329–9334.PubMedCrossRefGoogle Scholar
  6. Chen, G. P., Hackett, R., Walker, D., Taylor, A., Lin, Z. F., and Grierson, D. 2004. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol. 136:2641–2651.PubMedCrossRefGoogle Scholar
  7. Colby, S. M., Crock, J., Dowdle-Rizzo, B., Lemaux, P. G., and Croteau, R. 1998. Germacrene C synthase from Lycopersicon esculentum cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase. Proc. Natl. Acad. Sci. USA 95:2216–2221.PubMedCrossRefGoogle Scholar
  8. Cooper, W. R. and Goggin, F. L. 2005. Effects of jasmonate-induced defenses in tomato on the potato aphid, Macrosiphum euphorbiae. Entomol. Exp. Appl. 115:107–115.CrossRefGoogle Scholar
  9. Corrado, G., Bovi, P. D., Ciliento, R., Gaudio, L., Di Maro, A., Aceto, S., Lorito, M., and Rao, R. 2005. Inducible expression of a Phytolacca heterotepala ribosome-inactivating protein leads to enhanced resistance against major fungal pathogens in tobacco. Phytopathology 95:206–215.Google Scholar
  10. Degenhardt, J., Gershenzon, J., Baldwin, I. T., and Kessler, A. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol. 14:169–176.PubMedCrossRefGoogle Scholar
  11. Griffiths, A., Barry, C., Alpuche-Solis, A. G., and Grierson, D. 1999. Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. J. Exp. Bot. 50:793–798.CrossRefGoogle Scholar
  12. Guerrieri, E., Poppy, G. M., Powell, W., Rao, R., and Pennacchio, F. 2002. Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J. Chem. Ecol. 28:1703–1715.PubMedCrossRefGoogle Scholar
  13. Heil, M. 2002. Ecological costs of induced resistance. Curr. Opin. Plant Biol. 5:345–350.PubMedCrossRefGoogle Scholar
  14. Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7:61–67.PubMedCrossRefGoogle Scholar
  15. Heitz, T., Bergey, D. R., and Ryan, C. A. 1997. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol. 114:1085–1093.PubMedCrossRefGoogle Scholar
  16. Holopainen, J. K. 2004. Multiple functions of inducible plant volatiles. Trends Plant Sci. 9:529–533.PubMedCrossRefGoogle Scholar
  17. Howe, G. A. 2004. Jasmonates as signals in the wound response. J. Plant Growth Regen. 23:223–237.CrossRefGoogle Scholar
  18. Kant, M. R., Ament, K., Sabelis, M. W., Haring, M. A., and Schuurink, R. C. 2004. Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol. 135:483–495.PubMedCrossRefGoogle Scholar
  19. Kessler, A. and Baldwin, I. T. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53:299–328.PubMedCrossRefGoogle Scholar
  20. Kessler, A., Halitschke, R., and Baldwin, I. T. 2004. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668.PubMedCrossRefGoogle Scholar
  21. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-ΔΔCt) method. Methods 25:402–408.PubMedCrossRefGoogle Scholar
  22. Maffei, M., Bossi, S., Spiteller, D., Mithofer, A., and Boland, W. 2004. Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol. 134:1752–1762.PubMedCrossRefGoogle Scholar
  23. Matsui, K., Fukutomi, S., Wilkinson, J., Hiatt, B., Knauff, V., and Kajwara, T. 2001. Effect of overexpression of fatty acid 9-hydroperoxide lyase in tomatoes (Lycopersicon esculentum Mill.). J. Agric. Food Chem. 49:5418–5424.PubMedCrossRefGoogle Scholar
  24. McGurl, B. and Ryan, C. A. 1992. The organization of the prosystemin gene. Plant Mol. Biol. 20:405–409.PubMedCrossRefGoogle Scholar
  25. McGurl, B., Orozcocardenas, M., Pearce, G., and Ryan, C. A. 1994. Overexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase-inhibitor synthesis. Proc. Natl. Acad. Sci. USA 91:9799–9802.PubMedCrossRefGoogle Scholar
  26. Mithofer, A., Wanner, G., and Boland, W. 2005. Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137:1160–1168.PubMedCrossRefGoogle Scholar
  27. Paré, P. W. and Tumlinson, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161–1167.PubMedGoogle Scholar
  28. Paré, P. W. and Tumlinson, J. H. 1998. Cotton volatiles synthesized and released distal to the site of insect damage. Phytochemistry 47:521–526.CrossRefGoogle Scholar
  29. Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.PubMedCrossRefGoogle Scholar
  30. Rohlf, F. J. and Sokal, R. R. 1995. Statistical Tables. Freeman, New York, NY.Google Scholar
  31. Ryan, C. A. and Pearce, G. 2003. Systemins: a functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. USA 100:14577–14580.PubMedCrossRefGoogle Scholar
  32. Sanchez-Hernadez, C., Lopez, M. G., and Delano, J. P. 2006. Reduced levels of volatile emission in jasmonate-deficient spr2 tomato mutants favour ovideposition by insect herbivores. Plant Cell Env. 29:546–557.CrossRefGoogle Scholar
  33. Scheer, J. M. and Ryan, C. A. 2002. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. Proc. Natl. Acad. Sci. USA 99:9585–9590.PubMedCrossRefGoogle Scholar
  34. Schilmiller, A. L. and Howe, G. A. 2005. Systemic signaling in the wound response. Curr. Opin. Plant Biol. 8:369–377.PubMedCrossRefGoogle Scholar
  35. Shewmaker, C. K., Ridge, N. P., Pokalsky, A. R., Rose, R. E., and Hiatt, W. R. 1990. Nucleotide-sequence of an Ef-1-Alpha genomic clone from tomato. Nucleic Acid Res. 18:4276.PubMedCrossRefGoogle Scholar
  36. Sokal, R. R. and Rohlf, F. J. K. 1995. Biometry. W.H. Freeman, New York, NY.Google Scholar
  37. Stout, M. J., Thaler, J. S., and Thomma, B. 2006. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu. Rev. Entomol. 51:663–689.PubMedCrossRefGoogle Scholar
  38. Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688.CrossRefGoogle Scholar
  39. van Blokland, R., Ross, S., Corrado, G., Scollan, C., and Meyer, P. 1998. Developmental abnormalities associated with deoxyadenosine methylation in transgenic tobacco. Plant J. 15:543–551.PubMedCrossRefGoogle Scholar
  40. Vancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, F., Castanera, P., and Sanchez-Serrano, J. J. 2001. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc. Natl. Acad. Sci. USA 98:8139–8144.PubMedCrossRefGoogle Scholar
  41. Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regen. 19:195–216.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • G. Corrado
    • 1
  • R. Sasso
    • 2
  • M. Pasquariello
    • 1
  • L. Iodice
    • 3
  • A. Carretta
    • 4
  • P. Cascone
    • 1
  • L. Ariati
    • 5
  • M. C. Digilio
    • 3
  • E. Guerrieri
    • 2
  • R. Rao
    • 1
  1. 1.Dipartimento di Scienze del Suolo della Pianta e dell’AmbienteUniversità degli Studi di Napoli “Federico II”Portici, NaplesItaly
  2. 2.Istituto per la Protezione delle Piante Consiglio Nazionale delle RicerchePortici, NaplesItaly
  3. 3.Dipartimento di Entomologia e Zoologia AgrariaUniversità degli Studi di Napoli “Federico II”Portici, NaplesItaly
  4. 4.Tortona, AlessandriaItaly
  5. 5.Dipartimento di Medicina Interna, Sezione Farmacologia e Tossicologia Cellulare e MolecolareUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations