Journal of Chemical Ecology

, Volume 32, Issue 1, pp 97–123 | Cite as

Activated Chemical Defense in Aplysina Sponges Revisited

Article

Abstract

Sponges of the genus Aplysina accumulate brominated isoxazoline alkaloids in concentrations that sometimes exceed 10% of their dry weight. We previously reported a decrease in concentrations of these compounds and a concomitant increase in concentrations of the monocyclic nitrogenous compounds aeroplysinin-1 and dienone in Aplysina aerophoba following injury of the sponge tissue. Further investigations indicated a wound-induced enzymatic cleavage of the former compounds into the latter, and demonstrated that these reactions also occur in other Aplysina sponges. A recent study on Caribbean Aplysina species, however, introduced doubt regarding the presence of a wound-induced bioconversion in sponges of this genus. This discrepancy motivated us to reinvestigate carefully the fate of brominated alkaloids in A. aerophoba and in other Aplysina sponges following mechanical injury. As a result of this study we conclude that (1) tissue damage induces a bioconversion of isoxazoline alkaloids into aeroplysinin-1 and dienone in Aplysina sponges, (2) this reaction is likely catalyzed by enzymes, and (3) it may be ecologically relevant as the bioconversion products possibly protect the wounded sponge tissue from invasion of bacterial pathogens.

Key Words

Wound-induced bioconversion chemical defense biotransformation brominated alkaloids enzymatic cleavage marine sponge 

Notes

Acknowledgment

We acknowledge Prof. Werner E.G. Müller, Prof. Renato Batel, and the staff of the Ruder Boscovic Center for Marine Research for assistance during organization of sample collections and laboratory work at Rovinj, Croatia. We also thank Sabine Borstel for help in isolating the sponge metabolites and Arno Kunze for samples from Caribbean Aplysina sponges. Carsten Thoms acknowledges support with a Fedodor Lynen Fellowship from the Alexander von Humboldt Foundation, Bonn. This work was supported by the Bundesministerium für Bildung und Forschung (project: Center of Excellence BIOTECmarin). Finally, we thank two anonymous referees who helped to improve this manuscript.

References

  1. Adler, F. R., Harvell, C. D. 1990Inducible defenses, phenotypic variability and biotic environmentsTrends Ecol. Evol.5407410CrossRefGoogle Scholar
  2. Aiello, A., Fattorusso, E., Menna, M., Pansini, M. 1995Chemistry of Verongida sponges. 5. Brominated metabolites from the Caribbean sponge Pseudoceratina spBiochem. Syst. Ecol.23377381Google Scholar
  3. Albrizio, S., Ciminiello, P., Fattorusso, E., Magno, S., Pansini, M. 1994Chemistry of Verongida sponges. 1. Constituents of the Caribbean sponge Pseudoceratina crassaTetrahedron50783788CrossRefGoogle Scholar
  4. Bakus, G. J., Targett, N. M., Schulte, B. 1986Chemical ecology of marine organisms: An overviewJ. Chem. Ecol.12951987CrossRefGoogle Scholar
  5. Becerro, M. A., Turon, X., Uriz, M. J. 1995Natural variation of toxicity in encrusting sponge Crambe crambe (Schmidt) in relation to size and environmentJ. Chem. Ecol.2119311946CrossRefGoogle Scholar
  6. Becerro, M. A., Turon, X., Uriz, M. J. 1997Multiple functions for secondary metabolites in encrusting marine invertebratesJ. Chem. Ecol.2315271547CrossRefGoogle Scholar
  7. Betancourt-Lozano, M., Gonzalez-Farias, F., Gonzalez-Acosta, B., Garcia-Gasca, A., Bastida-Zavala, J. R. 1998Variation of antimicrobial activity of the sponge Aplysina fistularis (Pallas, 1766) and its relation to associated faunaJ. Exp. Mar. Biol. Ecol.223118CrossRefGoogle Scholar
  8. Ciminiello, P., Costantino, V., Fattorusso, E., Magno, S., Mangoni, A., Pansini, M. 1994aChemistry of Verongida sponges. 2. Constituents of the Caribbean sponge Aplysina fistularis forma fulvaJ. Nat. Prod.57705712Google Scholar
  9. Ciminiello, P., Fattorusso, E., Magno, S., Pansini, M. 1994bChemistry of Verongida sponges. 3. Constituents of a Caribbean Verongula spJ. Nat. Prod.5715641569Google Scholar
  10. Ciminiello, P., Fattorusso, E., Magno, S., Pansini, M. 1995Chemistry of Verongida sponges. 4. Comparison of the secondary metabolite composition of several specimens of Pseudoceratina crassaJ. Nat. Prod.58689696CrossRefGoogle Scholar
  11. Ciminiello, P., Fattorusso, E., Magno, S., Pansini, M. 1996aChemistry of Verongida sponges. 6. Comparison of the secondary metabolic composition of Aplysina insularis and Aplysina fulvaBiochem. Syst. Ecol.24105107Google Scholar
  12. Ciminiello, P., Dell'aversano, C., Fattorusso, E., Magno, S., Carrano, L., Pansini, M. 1996bChemistry of Verongida sponges. 7. Bromocompounds from the Caribbean sponge Aplysina archeriTetrahedron5298639868CrossRefGoogle Scholar
  13. Ciminiello, P., Fattorusso, E., Forino, M., Magno, S., Pansini, M. 1997Chemistry of Verongida sponges. 8. Bromocompounds from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicolaTetrahedron5365656572CrossRefGoogle Scholar
  14. Ciminiello, P., Dell'aversano, C., Fattorusso, E., Magno, S., Pansini, M. 1999Chemistry of Verongida sponges. 9. Secondary metabolite composition of the Caribbean sponge Aplysina cauliformisJ. Nat. Prod.62590593CrossRefPubMedGoogle Scholar
  15. Ciminiello, P., Dell'aversano, C., Fattorusso, E., Magno, S., Pansini, M. 2000Chemistry of Verongida sponges. 10. Secondary metabolite composition of the Caribbean sponge Verongula giganteaJ. Nat. Prod.63263266CrossRefPubMedGoogle Scholar
  16. Conn, E. E. 1979

    Cyanide and cyanogenic glycosides

    Rosenthal, G. A.Janzen, D. H. eds. Herbivores: Their Interaction with Secondary Plant MetabolitesAcademic PressNew York387412
    Google Scholar
  17. Debitus, C., Guella, G., Mancini, I., Waikedre, J., Guemas, J. P., Nicolas, J. L., Pietra, F. 1998Quinolones from a bacterium and tyrosine metabolites from its host sponge, Suberea creba from the Coral SeaJ. Mar. Biotechnol.6136141PubMedGoogle Scholar
  18. Ebel, R. (1998). Wundinduzierte Biotransformation bromierter Alkaloide in Schwämmen der Gattung Aplysina: Biochemische Charakterisierung und ökologische Bedeutung. PhD dissertation. University of Würzburg, Germany.Google Scholar
  19. Ebel, R., Brenzinger, M., Kunze, A., Gross, H. J., Proksch, P. 1997Wound activation of protoxins in marine sponge Aplysina aerophobaJ. Chem. Ecol.2314511462CrossRefGoogle Scholar
  20. Ebel, R., Marin, A., Proksch, P. 1999Organ-specific distribution of dietary alkaloids in the marine opisthobranch Tylodina perversaBiochem. Syst. Ecol.27769777Google Scholar
  21. Engel, S., Jensen, P. R., Fenical, W. 2002Chemical ecology of marine microbial defenseJ. Chem. Ecol.2819711985CrossRefPubMedGoogle Scholar
  22. Fahey, J. W., Zalcmann, A. T., Talalay, P. 2001The chemical diversity and distribution of glucosinolates and isothiocyanates among plantsPhytochemistry56551CrossRefPubMedGoogle Scholar
  23. Fendert, T. (2000). Charakterisierung der enzymatischen Abwehrreaktion in Schwämmen der Gattung Aplysina und Isolierung von Bromotyrosinakaloiden aus Aplysina insularis. PhD dissertation. University of Würzburg, Germany.Google Scholar
  24. Gleadow, R. M., Woodrow, I. E. 2002Constraints on effectiveness of cyanogenic glycosides in herbivore defenseJ. Chem. Ecol.2813011313CrossRefPubMedGoogle Scholar
  25. Glen, W. A., Kramer, C. Y. 1958Analysis of variance of a randomized block design with missing observationsAppl. Stat.7173185Google Scholar
  26. Goldenstein, G., Fendert, T., Proksch, P., Winterfeldt, E. 2000Enantioselective preparation and enzymatic cleavage of spiroisoxazoline amidesTetrahedron5641734185CrossRefGoogle Scholar
  27. Green, G. 1977Ecology of toxicity in marine spongesMar. Biol.40207215CrossRefGoogle Scholar
  28. Hammerstrom, K., Dethier, M. N., Duggins, D. O. 1998Rapid phlorotannin induction and relaxation in five Washington kelpsMar. Ecol., Prog. Ser.165293305Google Scholar
  29. Harvell, C. D. 1990The ecology and evolution of inducible defensesQ. Rev. Biol.65323340CrossRefPubMedGoogle Scholar
  30. Havel, J. 1986

    Predator-induced defenses: A review

    Kerfoot, W. C.Sih, A. eds. Predation: Direct and Indirect Effects on Aquatic CommunitiesUniversity Press of New EnglandHanover, NH263278
    Google Scholar
  31. Hay, M. E., Fenical, W. 1988Marine plant–herbivore interactions: The ecology of chemical defenseAnnu. Rev. Ecolog. Syst.19111145Google Scholar
  32. Hickel, A., Hasslacher, M., Griengl, H. 1996Hydroxynitrile lyases: Functions and propertiesPhysiol. Plant.98891898CrossRefGoogle Scholar
  33. Jung, V., Pohnert, G. 2001Rapid wound-activated transformation of the green algal defensive metabolite caulerpenyneTetrahedron5771697172Google Scholar
  34. Jung, V., Thibaut, T., Meinesz, A., Pohner, T. G. 2002Comparison of the wound-activated transformation of caulerpenyne by invasive and noninvasive Caulerpa species of the MediterraneanJ. Chem. Ecol.2820912105CrossRefPubMedGoogle Scholar
  35. Kelly, S. R., Jensen, P. R., Henkel, T. P., Fenical, W., Pawlik, J. R. 2003Effects of Caribbean sponge extracts on bacterial attachmentAquat. Microb. Ecol.31175182Google Scholar
  36. Lewis, S. M., Norris, J. N., Searles, R. B. 1987The regulation of morphological plasticity in tropical reef algae by herbivoryEcology68636641Google Scholar
  37. Li, C. C. 1964Introduction to Experimental StatisticsMcGraw-HillNew YorkGoogle Scholar
  38. Lurling, M. 2003The effect of substances from different zooplankton species and fish on the induction of defensive morphology in the green alga Scenedesmus obliquusJ. Plankton Res.25979989Google Scholar
  39. Marinlit Version October 2003. A marine literature database produced and maintained by the Department of Chemistry, University of Canterbury, New Zealand.Google Scholar
  40. McClintock, J. B., Swenson, D., Trapido-Rosenthal, H., Banghart, L. 1997Ichthyodeterrent properties of lipophilic extracts from Bermudian spongesJ. Chem. Ecol.2316071620CrossRefGoogle Scholar
  41. Müller, W. E. G., Klemt, M., Thakur, N. L., Schröder, H. C., Aiello, A., D'esposito, M., Menna, M., Fattorusso, E. 2004Molecular/chemical ecology in sponges: Evidence for an adaptive antibacterial response in Suberites domunculaMar. Biol.1441929CrossRefGoogle Scholar
  42. Page, M., West, L., Northcote, P., Battershill, C., Kelly, M. 2005Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheliJ. Chem. Ecol.3111611174CrossRefPubMedGoogle Scholar
  43. Paul, V. J., Puglisi, M. P. 2004Chemical mediation of interactions among marine organismsNat. Prod. Rep.21189209CrossRefPubMedGoogle Scholar
  44. Paul, V. J., Alstyne, K. L. 1992Activation of chemical defenses in the tropical green algae Halimeda sppJ. Exp. Mar. Biol. Ecol.160191203CrossRefGoogle Scholar
  45. Puyana, M., Fenical, W., Pawlik, J. R. 2003Are there activated chemical defenses in sponges of the genus Aplysina from the Caribbean?Mar. Ecol. Prog. Ser.246127135Google Scholar
  46. Richelle-Maurer, E., Kluijver, M. J., Feio, S., Gaudencio, S., Gaspar, H., Gomez, R., Tavares, R., Vyver, G., Soest, R. W. M. 2003Localization and ecological significance of oroidin and sceptrin in the Caribbean sponge Agelas coniferaBiochem. Syst. Ecol.3110731091Google Scholar
  47. Roda, A. L., Baldwin, I. T. 2003Molecular technology reveals how the induced direct defenses of plants workBasic Appl. Ecol.41526CrossRefGoogle Scholar
  48. Steel, H. C., Cockeran, R., Anderson, R. 2002Platelet-activating factor and lyso-PAF possess direct antimicrobial properties in vitroAPMIS110158164CrossRefPubMedGoogle Scholar
  49. Steneck, R. S., Adey, W. H. 1976Role of environment in control of morphology in Lithophyllum congestum, a Caribbean algal ridge builderBot. Mar.19197215Google Scholar
  50. Stoewsand, G. S. 1995Bioactive organosulfur phytochemicals in Brassica oleracea vegetables—a reviewFood Chem. Toxicol.33537543PubMedGoogle Scholar
  51. Tanaka, R., Ishizaki, H., Kawano, S., Okuda, H., Miyahara, K., Noda, N. 1997Fruiting-inducing activity and antifungal properties of lipid components in members of AnnelidaChem. Pharm. Bull.4517021704PubMedGoogle Scholar
  52. Taylor, R. B., Sotka, E., Hay, M. E. 2002Tissue-specific induction of herbivore resistance: Seaweed response to amphipod grazingOecologia1326876CrossRefGoogle Scholar
  53. Teeyapant, R., Proksch, P. 1993Biotransformation of brominated compounds in the marine sponge Verongia aerophoba. Evidence for an induced chemical defense?Naturwissenschaften80369370CrossRefGoogle Scholar
  54. Teeyapant, R., Woerdenbag, H. J., Kreis, P., Hacker, J., Wray, V., Witte, L., Proksch, P. 1993Antibiotic and cytotoxic activity of brominated compounds from the marine sponge Verongia aerophobaZ. Naturforsch.48c939945Google Scholar
  55. Thacker, R. W., Becerro, M. A., Lumbang, W. A., Paul, V. J. 1998Allelopathic interactions between sponges on a tropical reefEcology7917401750Google Scholar
  56. Thompson, J. E., Barrow, K. D., Faulkner, D. J. 1983Localization of two brominated metabolites, aerothionin and homoaerothionin, in spherulous cells of the marine sponge Aplysina fistularisActa Zool. Stockh.64199210Google Scholar
  57. Thoms, C., Horn, M., Wagner, M., Hentschel, U., Proksch, P. 2003aMonitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantationMar. Biol.142685692Google Scholar
  58. Thoms, C., Ebel, R., Hentschel, U., Proksch, P. 2003bSequestration of dietary alkaloids by the spongivorous marine mollusc Tylodina perversaZ. Naturforsch.58c426432Google Scholar
  59. Thoms, C., Wolff, M., Padmakumar, K., Ebel, R., Proksch, P. 2004Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophobaZ. Naturforsch.59c113122Google Scholar
  60. Turon, X., Becerro, M. A., Uriz, M. J. 2000Distribution of brominated compounds within the sponge Aplysina aerophoba: Coupling of X-ray microanalysis with cryofixation techniquesCell Tissue Res.301311322CrossRefPubMedGoogle Scholar
  61. Alstyne, K. L., Houser, L. T. 2003Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defenseMar. Ecol. Prog. Ser.250175181Google Scholar
  62. Alstyne, K. L., Wolfe, G. V., Freidenburg, T. L., Neill, A., Hicken, C. 2001Activated defense systems in marine macroalgae: Evidence for an ecological role for DMSP cleavageMar. Ecol., Prog. Ser.2135365Google Scholar
  63. Wajant, H., Effenberger, F. 1996Hydroxynitrile lyases of higher plantsBiol. Chem.377611617PubMedGoogle Scholar
  64. Weiss, B., Ebel, R., Elbrächter, M., Kirchner, M., Proksch, P. 1996Defense metabolites from the marine sponge Verongia aerophobaBiochem. Syst. Ecol.24112Google Scholar
  65. Wolfe, G. V., Steinke, M. 1996Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyiLimnol. Oceanogr.4111511160Google Scholar
  66. Wolfe, G. V., Steinke, M., Kirst, G. O. 1997Grazing-activated chemical defence in a unicellular marine algaNature387894897Google Scholar
  67. Zar, J. H. 1999Biostatistical AnalysisPrentice-HallUpper Saddle River, NJGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institut für Pharmazeutische BiologieUniversität DüsseldorfDüsseldorfGermany
  2. 2.University of Guam Marine LaboratoryMangilaoUSA

Personalised recommendations