Advertisement

Journal of Chemical Ecology

, Volume 32, Issue 1, pp 29–47 | Cite as

Constitutive and Jasmonate-Inducible Traits of Datura wrightii

  • J. Daniel Hare
  • Linda L. Walling
Article

Abstract

Plants in the family Solanaceae possess numerous traits that are induced from damage from herbivores. Many of these also can be induced by exposing plants to the plant hormone jasmonic acid or its volatile ester methyl jasmonate. Datura wrightii (Solanaceae) is dimorphic for leaf trichome morphology in most southern California populations. Trichome phenotype is governed by a single gene, and the glandular trichome condition is dominant and under developmental control. This study addressed two major objectives. The first was to determine if mature plants with glandular or nonglandular trichomes responded differentially to methyl jasmonate. The second objective was to determine if exposure of seedlings to methyl jasmonate during the period of trichome differentiation altered either the phenotype or the density of trichomes that mature plants expressed. Methyl jasmonate induced from 200 to 800 μg/ml of proteinase inhibitor activity and increased the activity of polyphenol oxidase by more than threefold depending on the experiment. These increases did not differ significantly between plants expressing glandular or nonglandular trichomes. Methyl jasmonate exposure did not increase the activity of peroxidase or the concentration of scopolamine or hyoscyamine, the two major alkaloids of Datura. Exposure to methyl jasmonate during trichome differentiation did not affect either the final trichome phenotype or the density of either type of trichome, but did increase the production of acylsugars in glandular trichomes by 44%. Because trichome phenotype was not inducible, and because both trichome phenotypes showed similar increases in proteinase inhibitors and polyphenol oxidase activity, the methyl-jasmonate-inducible responses of D. wrightii are independent of trichome phenotype in D. wrightii.

Key Words

Acylsugars alkaloids chemical defense Datura wrightii methyl jasmonate inducible traits polyphenol oxidase proteinase inhibitors trichomes 

Notes

Acknowledgments

We thank W. Chang, K. Malloy, and C. Tiu for assistance in the greenhouse and with counting trichomes, F. Holzer for the Pin assays, and J. Narvaez for experimental advice. This material is based on the work supported by the National Science Foundation under Grant no. DEB 0414181 to J. D. Hare.

References

  1. Agrawal, A. A. 1999Induced responses to herbivory in wild radish: Effects on several herbivores and plant fitnessEcology8017131723Google Scholar
  2. Baldwin, I. T. 1996Methyl jasmonate-induced nicotine production in Nicotiana attenuata-inducing defenses in the field without woundingEntomol. Exp. Appl.80213220CrossRefGoogle Scholar
  3. Blauth, S. L., Churchill, G. A., Mutschler, M. A. 1998Identification of quantitative trait loci associated with acylsugar accumulation using intraspecific populations of the wild tomato, Lycopersicon pennelliiTheor. Appl. Genet.96458467CrossRefGoogle Scholar
  4. Bonierbale, M. W., Plaisted, R. L., Pineda, O., Tanksley, S. D. 1994QTL analysis of trichome-mediated insect resistance in potatoTheor. Appl. Genet.87973987CrossRefGoogle Scholar
  5. Boughton, A. J., Hoover, K., Felton, G. W. 2005Methyl jasmonate applications induce increased densities of glandular trichomes on tomato, Lycopersicon esculentumJ. Chem. Ecol.3122112216CrossRefPubMedGoogle Scholar
  6. Constabel, C. P., Ryan, C. A. 1998A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plantsPhytochemistry47507511CrossRefGoogle Scholar
  7. Elle, E., Hare, J. D. 2000No benefit of glandular trichome production in natural populations of Datura wrightii?Oecologia1235765CrossRefGoogle Scholar
  8. Elle, E., Dam, N. M., Hare, J. D. 1999Cost of glandular trichomes, a “resistance” character in Datura wrightii Regel (Solanaceae)Evolution532235Google Scholar
  9. Farmer, E. E., Ryan, C. A. 1990Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leavesProc. Natl. Acad. Sci. U.S.A.8777137716PubMedGoogle Scholar
  10. Felton, G. W., Workman, J., Duffey, S. S. 1992Avoidance of antinutritive plant defense: Role of midgut pH in Colorado potato beetleJ. Chem. Ecol.18571583CrossRefGoogle Scholar
  11. Fliniaux, M. A., Manceau, F., Jacquin Dubreuil, A. 1993Simultaneous analysis of l-hyoscyamine, l-scopolamine and dl-tropic acid in plant material by reversed-phase high-performance liquid chromatographyJ. Chromatogr.644193197CrossRefGoogle Scholar
  12. Forkner, R. E., Hare, J. D. 2000Genetic and environmental variation in acyl glucose ester production and glandular and nonglandular trichome densities in Datura wrightiiJ. Chem. Ecol.2628012823CrossRefGoogle Scholar
  13. Green, T. R., Ryan, C. A. 1972Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insectsScience175776777Google Scholar
  14. Gu, Y. Q., Chao, W. S., Tu, C. J., Walling, L. L. 1996Processing and localization of the wound-induced leucine aminopeptidase of Lycopersicon esculentumPlant Physiol.11196Google Scholar
  15. Gurusiddaiah, S., Kuo, T., Ryan, C. A. 1972Immunological comparisons of chymotrypsin inhibitor I among several genera of the SolanaceaePlant Physiol.50627631Google Scholar
  16. Hare, J. D. 2005Biological activity of acyl glucose esters from Datura wrightii glandular trichomes against three native insect herbivoresJ. Chem. Ecol.3114751491CrossRefPubMedGoogle Scholar
  17. Hare, J. D., Elle, E. 2001Geographic variation in the frequencies of trichome phenotypes of Datura wrightii and correlation with annual water deficitMadroño483337Google Scholar
  18. Hare, J. D., Elle, E. 2002Variable impact of diverse insect herbivores on dimorphic Datura wrightiiEcology8327112720Google Scholar
  19. Heidel, A. J., Baldwin, I. T. 2004Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guildsPlant Cell Environ.2713621373CrossRefGoogle Scholar
  20. Karban, R., Baldwin, I. T. 1997Induced Responses to HerbivoryUniversity of Chicago PressChicago, ILGoogle Scholar
  21. Kessler, A., Baldwin, I. T. 2001Defensive function of herbivore-induced plant volatile emissions in natureScience29121412144CrossRefPubMedGoogle Scholar
  22. Lemke, C. A., Mutschler, M. A. 1984Inheritance of glandular trichomes in crosses between Lycopersicon esculentum and Lycopersicon pennelliiJ. Am. Soc. Hortic. Sci.109592596Google Scholar
  23. Li, L., Li, C. Y., Howe, G. A. 2001Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defense and female fertilityPlant Physiol.12714141417PubMedGoogle Scholar
  24. Li, L., Zhao, Y. F., McCaig, B. C., Wingerd, B. A., Wang, J. H., Whalon, M. E., Pichersky, E., Shukle, R.H., Howe, G. A. 2004The tomato homolog of Coronatine-insensitive1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome developmentPlant Cell16126143PubMedGoogle Scholar
  25. Luckwill, L. C. 1943The Genus Lycopersicon, an Historical, Biological, and Taxonomic Survey of the Wild and Cultivated TomatoesThe University PressAberdeenGoogle Scholar
  26. Murdock, L. L., Brookhart, G., Dunn, P. E., Foard, D. E., Kelley, S., Kitch, L., Shade, R. E., Shukle, R. H., Shukle, R. H., Wolfson, J. L. 1987Cysteine digestive proteinases in ColeopteraComp. Biochem. Physiol., B87783787Google Scholar
  27. Parr, A. J., Payne, J., Eagles, J., Chapman, B. T., Robins, R. J., Rhodes, M. J. C. 1990Variation in tropane alkaloid accumulation within the Solanaceae and strategies for its exploitationPhytochemistry2925452550CrossRefGoogle Scholar
  28. Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J.-P., Broekaert, W. F. 1998Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in ArabidopsisPlant Cell1021032113CrossRefPubMedGoogle Scholar
  29. Ryan, C. A. 1967Quantitative determine of soluble cellular proteins by radial diffusion in agar gels containing antibodiesAnal. Biochem.19434440CrossRefPubMedGoogle Scholar
  30. SAS Institute2000SAS for Windows. Version 8SAS InstituteCary, NC, USAGoogle Scholar
  31. Shonle, I., Bergelson, J. 2000Evolutionary ecology of the tropane alkaloids of Datura stramonium L. (Solanaceae)Evolution54778788PubMedGoogle Scholar
  32. Sokal, R. R., Rohlf, F. J. 1995Biometry3W.H. FreemanNew YorkGoogle Scholar
  33. Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J. P., Brown, R., Kazan, K., Loon, L. C., Dong, X. N., Pieterse, C. M. J. 2003NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosolPlant Cell15760770CrossRefPubMedGoogle Scholar
  34. Stout, M. J., Workman, J., Duffey, S. S. 1994Differential induction of tomato foliar proteins by arthropod herbivoresJ. Chem. Ecol.2025752594CrossRefGoogle Scholar
  35. Stout, M. J., Workman, K. V., Bostock, R. M., Duffey, S. S. 1998Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersicon esculentum) foliageEntomol. Exp. Appl.86267279CrossRefGoogle Scholar
  36. Thaler, J. S., Stout, M. J., Karban, R., Duffey, S. S. 1996Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and fieldJ. Chem. Ecol.2217671781CrossRefGoogle Scholar
  37. Traw, M. B., Bergelson, J. 2003Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in ArabidopsisPlant Physiol.13313671375CrossRefPubMedGoogle Scholar
  38. Traw, M. B., Dawson, T. E. 2002Differential induction of trichomes by three herbivores of black mustardOecologia (Berl.)131526532CrossRefGoogle Scholar
  39. Vallejo, R. L., Collins, W. W., Moll, R. H. 1994Inheritance of A and B glandular trichome density and polyphenol oxidase activity in diploid potatoesJ. Am. Soc. Hortic. Sci.119829832Google Scholar
  40. Dam, N. M., Hare, J. D. 1998aBiological activity of Datura wrightii glandular trichome exudate against Manduca sexta larvaeJ. Chem. Ecol.2415291549Google Scholar
  41. Dam, N. M., Hare, J. D. 1998bDifferences in distribution and performance of two sap-sucking herbivores on glandular and non-glandular Datura wrightiiEcol. Entomol.232232Google Scholar
  42. Dam, N. M., Hare, J. D., Elle, E. 1999Inheritance and distribution of trichome phenotypes in Datura wrightiiJ. Heredity90220227Google Scholar
  43. Dam, N. M., Horn, M., Mares, M., Baldwin, I. T. 2001Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuataJ. Chem. Ecol.27547568PubMedGoogle Scholar
  44. Ven, W. T. G., Levesque, C. S., Perring, T. M., Walling, L. L. 2000Local and systemic changes in squash gene expression in response to silverleaf whitefly feedingPlant Cell1214091423PubMedGoogle Scholar
  45. Walling, L. L. 2000The myriad plant responses to herbivoresJ. Plant Growth Regul.19195216PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations