Advertisement

Journal of Chemical Ecology

, Volume 33, Issue 2, pp 353–368 | Cite as

Differential Attraction of Heliothis subflexa Males to Synthetic Pheromone Lures in Eastern US and Western Mexico

  • Astrid T. GrootEmail author
  • Richard G. Santangelo
  • Emmarita Ricci
  • Cavell Brownie
  • Fred Gould
  • Coby Schal
Article

Abstract

The mate attraction signal of Heliothis subflexa (Hs) females consists of a multicomponent sex pheromone blend. In this study, we assessed the intraspecific importance of three groups of compounds found in Hs pheromone glands: three acetate esters (Z7-16:OAc, Z9-16:OAc, and Z11-16:OAc), two 14-carbon aldehydes (14:Ald and Z9-14:Ald), and one 16-carbon alcohol (Z11-16:OH). Because the relative importance of pheromone components may vary in different regions, we conducted experiments in Eastern US (North Carolina) and Western Mexico (Jalisco). Our experiments in Eastern US showed that when the acetates were omitted from a 7-component blend in rubber septa, fewer males were caught in cone traps. Subsequent experiments conducted both in Eastern US and Western Mexico indicated that the addition of Z9-16:OAc alone does not increase attraction of male Hs, while Z11-16:OAc does. The Hs male response to Z7-16:OAc differed between the two regions. In Eastern US, significantly more males were attracted to a minimal three-component blend to which Z7-16:OAc was added, but this was not the case in Western Mexico. The two 14-carbon aldehydes also showed differential attraction between the two regions. 14:Ald and Z9-14:Ald appeared not to play any role in the sexual communication of Hs in Eastern US, but reduced trap catches in Western Mexico. The alcohol Z11-16:OH was tested in two concurrent dose–response studies with Hs males in Western Mexico, one using a minimal blend and one using a complete blend. The minimal three-component blend provided a more discriminating tool for delineating dose–response effects of Z11-16:OH than the seven-component blend. In the minimal blend, the optimal dose of Z11-16:OH was 1%, while in the complete blend similar numbers of males were caught when the alcohol ranged from 1 to 25%.

Keywords

Sexual communication Pheromone Pheromone component Geographic variation Acetate esters 16-Carbon alcohol 14-Carbon aldehydes Dose–response Minimal blend Complete blend 

Notes

Acknowledgments

We thank Dr. Ricardo Ayala from the Biological Research Station of the University of Mexico in Chamela, Jalisco, for all logistical help in Jalisco, Pepe Orozco (Aútlan), Vittorio Rincon (Chamela), Francisco Moreno (Hidalgo), Randy Bailey (Oxford), and Erwin Massengil (Smithfield) for granting access to their fields, Reid Evans and Cathy Herring from Central Crops Research Station Clayton, NC, and Nicole Benda and Jen Petzold for assisting with maintenance of the field plot in Clayton, and Scott Bowdridge for logistical help in North Carolina. This research was supported by grants from NSF Population Biology 0235400, the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (CSREES), grant # 2005-00896, the W.M. Keck Center for Behavioral Biology, and the Blanton J. Whitmire Endowment at North Carolina State University.

References

  1. Arn, H., Esbjerg, P., Bues, R., Toth, M., Szochs, G., Guerin, P., and Rauscher, S. 1983. Field attraction of Agrotis segetum males in four European countries to mixtures containing three homologous acetates. J. Chem. Ecol. 9:267–276.CrossRefGoogle Scholar
  2. Butlin, R. 1995. Genetic variation in mating signals and responses, pp. 327–366, in D. M. Lambert and H. G. Spencer (eds.). Speciation and the Recognition Concept: Theory and Application. Johns Hopkins University Press, Baltimore, MD.Google Scholar
  3. Cardé, R. T., Cardé, A. M., Hill, A. S., and Roelofs, W. L. 1977. Sex pheromone specificity as a reproductive isolating mechanism among the sibling species Archips argyrospilus and A. mortuanus and other sympatric torticine moths (Lepidoptera: Tortricidae). J. Chem. Ecol. 3:71–84.CrossRefGoogle Scholar
  4. Chapin, J. B., Ganaway, D. R., Leonard, B. R., Micinsky, S., Burrise, E., and Graves, J. B. 1997. Species composition of Heliothinae captured in cone traps baited with synthetic bollworm or tobacco budworm pheromones. Southwest. Entomol. 22:223–231.Google Scholar
  5. Cork, A., Boo, K. S., Dunkelblum, E., Hall, D. R., Jee-Rajunga, K., Kehat, M., Kong Jie, E., Park, K. C., Tepgidagarn, P., and Xun, L. 1992. Female sex pheromone of oriental tobacco budworm, Helicoverpa assulta (Guenee) (Lepidoptera: Noctuidae): Identification and field testing. J. Chem. Ecol. 18:403–418.CrossRefGoogle Scholar
  6. Eger, J. E., Jr., Sterling, W. L., and Hartstack, A. W., Jr. 1982. Population dynamics of Heliothis spp. on Castilleja indivisa, an unreported host plant, and Lupinus texensis in Texas. Environ. Entomol. 11:327–333.Google Scholar
  7. El-Sayed, A. M., Delisle, J., De Lury, N., Gut, L. J., Judd, G. J. R., Legrand, S., Reissig, W. H., Roelofs, W. L., Unelius, C. R., and Trimble, R. M. 2003. Geographic variation in pheromone chemistry, antennal electrophysiology, and pheromone-mediated trap catches of North American populations of the obliquebanded leafroller. Environ. Entomol. 32:470–476.CrossRefGoogle Scholar
  8. Fadamiro, H. Y. and Baker, T. C. 1997. Helicoverpa zea males (Lepidoptera: Noctuidae) respond to the intermittent fine structure of their sex pheromone plume and an antagonist in a flight tunnel. Physiol. Entomol. 22:316–324.CrossRefGoogle Scholar
  9. Fadamiro, H. Y., Cossé, A. A., and Baker, T. C. 1999. Fine-scale resolution of closely spaced pheromone and antagonist filaments by flying male Helicoverpa zea. J. Comp. Physiol. A 185:131–141.CrossRefGoogle Scholar
  10. Forbes, W. T. M. 1954. Lepidoptera of New York and neighboring states, Noctuidae. Part III. Cornell University Agricultural Experiment Station, Ithaca, NY 329.Google Scholar
  11. Gemeno, C., Lutfallah, A. F., and Haynes, K. F. 2000. Pheromone blend variation and cross-attraction among populations of the black cutworm moth (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 93:1322–1328.CrossRefGoogle Scholar
  12. Gries, G., Gries, R., Khaskin, G., Slessor, K. N., Grant, G. G., Liska, J., and Kapitola, P. 1996. Specificity of nun and gypsy moth sexual communication through multiple-component pheromone blends. Naturwissenschaften 83:382–385.Google Scholar
  13. Gries, G., Schaefer, P. W., Gries, R., Liska, J., and Gotoh, T. 2001. Reproductive character displacement in Lymantria monacha from Northern Japan? J. Chem. Ecol. 27:1163–1176.PubMedCrossRefGoogle Scholar
  14. Groot, A. T., Ward, C., Wang, J., Pokrzywa, A., O’brien, J., Bennett, J., Kelly, J., Santangelo, R. G., Schal, C., and Gould, F. 2004. Introgressing pheromone QTL between species: towards and evolutionary understanding of differentiation in sexual communication. J. Chem. Ecol. 30:2495–2514.PubMedCrossRefGoogle Scholar
  15. Groot, A. T., Fan, Y., Brownie, C., Jurenka, R. A., Gould, F., and Schal, C. 2005. Effect of PBAN on pheromone production in mated Heliothis virescens and Heliothis subflexa females. J. Chem. Ecol. 31:15–28.PubMedCrossRefGoogle Scholar
  16. Groot, A. T., Horovitz, J. L., Hamilton, J., Santangelo, R. G., Schal, C., and Gould, F. 2006. Experimental evidence for interspecific directional selection on moth pheromone communication. Proc. Natl. Acad. Sci. U S A 103:5858–5863.PubMedCrossRefGoogle Scholar
  17. Guerin, P. M., Baltensweiler, W., Arn, H., and Buser, H. R. 1984. Host race pheromone polymorphism in the larch budmoth. Experientia 40:892–894.CrossRefGoogle Scholar
  18. Hansson, B. S., Toth, M., Löfstedt, C., Szöcs, G., Subchev, M., and Löfqvist, J. 1990. Pheromone variation among eastern European and western Asian populations of the turnip moth Agrotis segetum. J. Chem. Ecol. 16:1611–1622.CrossRefGoogle Scholar
  19. Hartstack, A. W., Witz, J. A., and Buck, D. R. 1979. Moth traps for the tobacco budworm. J. Econ. Entomol. 72:519–522.Google Scholar
  20. Hartstack, A. W., Jr., Lopez, J. D., Klun, J. A., Witz, J. A., Shaver, T. N., and Plimmer, J. R. 1980. New trap designs and pheromone bait formulation for Heliothis. Proc. Belt. Cotton. Proc. Res. Conf. 132–135.Google Scholar
  21. Heath, R. R., Mitchell, E. R., and Cibrian-Tovar, J. 1990. Effect of release rate and ratio of (Z)-11-hexadecen-1-ol from synthetic pheromone blends on trap capture of Heliothis subflexa (Lepidoptera: Noctuidae). J. Chem. Ecol. 16:1259–1268.CrossRefGoogle Scholar
  22. Heath, R. R., Mclaughlin, J. R., Prosholt, F., and Teal, P. E. A. 1991. Periodicity of female sex pheromone titer and release in Heliothis subflexa and H. virescens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 84:182–189.Google Scholar
  23. Jurenka, R. A. 1996. Signal transduction in the stimulation of sex pheromone biosynthesis in moths. Arch. Insect Biochem. Physiol. 33:245–258.CrossRefGoogle Scholar
  24. Jurenka, R. A. 2004. Insect pheromone biosynthesis. Top. Curr. Chem. 239:97–132.CrossRefGoogle Scholar
  25. Jurenka, R. A. and Roelofs, W. L. 1993. Biosynthesis and endocrine regulation of fatty acid derived sex pheromones in moths, pp. 353–388, in D. W. Stanley-Samuelson and D. R. Nelson (eds.). Insect Lipids: Chemistry, Biochemistry and Biology. University of Nebraska Press, Lincoln.Google Scholar
  26. Klun, J. A. and Cooperators. 1975. Insect sex pheromones: intraspecific pheromonal variability of Ostrinia nubilalis in North America and Europe. Environ. Entomol. 4:891–894.Google Scholar
  27. Klun, J. A., Plimmer, J. R., and Bierl-Leonhardt, B. A. 1979. Trace chemicals: essence of sexual communication systems in Heliothis species. Science 204:1328–1330.PubMedCrossRefGoogle Scholar
  28. Klun, J. A., Bierl–Leonhardt, B. A., Plimmer, J. R., Sparks, A. N., Primiani, M., Chapman, O. L., Lepone, G., and Lee, G. H. 1980a. Sex pheromone chemistry of the female tobacco budworm moth Heliothis virescens. J. Chem. Ecol. 6:177–183.CrossRefGoogle Scholar
  29. Klun, J. A., Plimmer, J. R., Bierl-Leonhardt, B. A., Sparks, A. N., Primiani, M., Chapman, O. L., Lee, G. H., and Lepone, G. 1980b. Sex pheromone chemistry of female corn earworm moth, Heliothis zea. J. Chem. Ecol. 6:165–175.CrossRefGoogle Scholar
  30. Klun, J. A., Leonardt, B. A., Lopez, J. D., and Lachance, L. E. 1982. Female Heliothis subflexa (Lepidoptera, Noctuidae) sex pheromone–chemistry and congeneric comparisons. Environ. Entomol. 11:1084–1090.Google Scholar
  31. Laster, M. L. 1972. Interspecific hybridization of Heliothis virescens and H. subflexa. Environ. Entomol. 1:682–687.Google Scholar
  32. Linn, C. E. Jr. and Roelofs, W. L. 1989. Response specificity of male moths to multicomponent pheromones. Chem. Senses 14:421–437.CrossRefGoogle Scholar
  33. Löfstedt, C. 1990. Population variation and genetic control of pheromone communication systems in moths. Entomol. Exp. Appl. 54:199–218.CrossRefGoogle Scholar
  34. Löfstedt, C. 1993. Moth pheromone genetics and evolution. Philos. Trans. R. Soc. Lond., B Biol. Sci. 340:167–177.CrossRefGoogle Scholar
  35. Löfstedt, C., Herrebout, W. M., and Menken, S. B. J. 1991. Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae). Chemoecology 2:20–28.CrossRefGoogle Scholar
  36. Lopez, J. D., Goodenough, J. L., and Beerwinkel, K. R. 1994. Comparison of two sex pheromone trap designs for monitoring corn earworm and tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 87:793–801.Google Scholar
  37. McElfresh, J. S. and Millar, J. C. 1999. Geographic variation in sex pheromone blend of Hemileuca electra from Southern California. J. Chem. Ecol. 25:2505–2525.CrossRefGoogle Scholar
  38. McElfresh, J. S. and Millar, J. C. 2001. Geographic variation in the pheromone system of thesaturniid moth Hemileuca eglanterina. Ecology 82:3505–3518.Google Scholar
  39. McElvare, R. R. 1941. Validity of the species Heliothis subflexa (Gn.) (Lepidoptera). Bull. Brooklyn Entomol. Soc. 36:29–30.Google Scholar
  40. Mitter, C., Poole, R. W., and Matthews, M. 1993. Biosystematics of the Heliothinae (Lepidoptera: Noctuidae). Annu. Rev. Entomol. 38:207–225.CrossRefGoogle Scholar
  41. Parajulee, M. N., Rummel, D. R., Arnold, M. D., and Carrol, S. C. 2004. Long term seasonal abundance patterns of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) in the Texas high plains. J. Econ. Entomol. 97:668–677.PubMedCrossRefGoogle Scholar
  42. Pope, M. M., Gaston, L. K., and Baker, T. C. 1982. Composition, quantification, and periodicity of sex pheromone gland volatiles from individual Heliothis virescens females. J. Chem. Ecol. 8:1043–1055.CrossRefGoogle Scholar
  43. Pope, M. M, Gaston, L. K., and Baker, T. C. 1984. Composition, quantification, and periodicity of sex pheromone volatiles from individual Heliothis zea females. J. Insect Physiol. 30:943–945.CrossRefGoogle Scholar
  44. Potting, R. P. J., Lösel, P. M., and Scherkenbeck, J. 1999. Spatial discrimination of pheromones and behavioural antagonists by the tortricid moths Cydia pomonella and Adoxophyes orana. J. Comp. Physiol. A 185:419–425.CrossRefGoogle Scholar
  45. Quero, C. and Baker, T. C. 1999. Antagonistic effect of (Z)-11-hexadecen-1-ol on the pheromone-mediated flight of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae). J. Insect Behav. 12:701–710.CrossRefGoogle Scholar
  46. Quero, C., Fadamiro, H. Y., and Baker, T. C. 2001. Responses of male Helicoverpa zea to single pulses of sex pheromone and behavioural antagonist. Physiol. Entomol. 26:106–115.CrossRefGoogle Scholar
  47. Raina, A. K., Klun, J. A., Lopez, J. D., and Leonhardt, B. A. 1986. Female sex pheromone of Heliothis phloxiphaga (Lepidoptera: Noctuidae): chemical identification, male behavioral response in the flight tunnel, and field tests. Environ. Entomol. 15:931–935.Google Scholar
  48. Roelofs, W. L., Hill, A. S., Cardé, R. T., and Baker, T. C. 1974. Two sex pheromone components of the tobacco budworm moth, Heliothis virescens. Life Sci. 14:1555–1562.PubMedCrossRefGoogle Scholar
  49. Sheck, A. L. and Gould, F. 1995. Genetic analysis of differences in oviposition preferences of Heliothis virescens and H. subflexa (Lepidoptera: Noctuidae). Environ. Entomol. 24:341–347.Google Scholar
  50. Sheck, A. L. and Gould, F. 1996. The genetic basis of differences in growth and behavior of specialist and generalist herbivore species: selection on hybrids of Heliothis virescens and Heliothis subflexa (Lepidoptera). Evolution 50:831–841.CrossRefGoogle Scholar
  51. Sheck, A. L., Groot, A. T., Ward, C., Gemeno, C., Wang, J., Schal, C., and Gould, F. 2006. Genetics of pheromone blend differences between Heliothis virescens and Heliothis subflexa: a chromosome mapping approach. J. Evol. Biol. 19:600–617.PubMedCrossRefGoogle Scholar
  52. Sparks, A. N., Raulston, J. R., Lingren, P. D., Carpenter, J. E., Klun, J. A., and Mullinix, B. G. 1979. Field response of male Heliothis virescens to pheromonal stimuli and traps. ESA Bull. 25:268–274.Google Scholar
  53. Teal, P. E. A. and Tumlinson, J. H. 1987. The role of alcohols in pheromone biosynthesis by two noctuid moths that use acetate pheromone components. Arch. Insect Biochem. Physiol. 4:261–269.CrossRefGoogle Scholar
  54. Teal, P. E. A., Heath, R. R., Tumlinson, J. H., and Mclaughlin, J. R. 1981. Identification of sex pheromone of Heliothis subflexa (G.) (Lepidoptera: Noctuidae) and field trapping studies using different blends of components. J. Chem. Ecol. 7:1011–1022.CrossRefGoogle Scholar
  55. Teal, P. E. A., Tumlinson, J. H., and Heath, R. R. 1986. Chemical and behavioral analyses of volatile sex pheromone components released by calling Heliothis virescens (F.) females (Lepidoptera: Noctuidae). J. Chem. Ecol. 12:107–125.CrossRefGoogle Scholar
  56. Tóth, M., Löfstedt, C., Blair, B. W., Cabello, T., Farag, A., Hansson, B. S., Kovalev, B. G., Maini, S., Nesterov, E. A., Pajor, I., Sazonov, A. P., Shamshev, I. V., Subchev, M., and Szöcs, G. 1992. Attraction of male Turnip moths Agrotis segetum (Lepidoptera: Noctuidae) to sex pheromone components and their mixtures at 11 sites in Europe, Asia, and Africa. J. Chem. Ecol. 18:1337–1347.CrossRefGoogle Scholar
  57. Tumlinson, J. H., Hendricks, P. E., Mitchell, E. R., Doolittle, R. E., and Brennan, M. M. 1975. Isolation, identification and synthesis of the sex pheromone of the tobacco budworm. J. Chem. Ecol. 1:203–214.CrossRefGoogle Scholar
  58. Tumlinson, J. H., Heath, R. R., and Teal, P. E. A. 1982. Analysis of chemical communication systems of Lepidoptera, pp. 1–25, in B. A. Leonhardt and M. Beroza (eds.). Insect Pheromone Technology–Chemistry and Applications. American Chemical Society, Washington D.C.Google Scholar
  59. Vetter, R. S. and Baker, T. C. 1983. Behavioral responses of male Heliothis virescens in a sustained flight-tunnel to combinations of seven compounds identified from female glands. J. Chem. Ecol. 9:747–759.CrossRefGoogle Scholar
  60. Vetter, R. S. and Baker, T. C. 1984. Behavioral responses of male Heliothis zea moths in sustained flight-tunnel to combinations of four compounds identified from female sex pheromone gland. J. Chem. Ecol. 10:193–202.CrossRefGoogle Scholar
  61. Vickers, N. J. 2002. Defining a synthetic blend attractive to male Heliothis subflexa under wind tunnel conditions. J. Chem. Ecol. 28:1255–1267.PubMedCrossRefGoogle Scholar
  62. Vickers, N. J. and Baker, T. C. 1997. Chemical communication in heliothine moths. VII. Correlation between diminished responses to point-source plumes and single filaments similarly tainted with a behavioral antagonist. J. Comp. Physiol. A 180:523–536.CrossRefGoogle Scholar
  63. Vickers, N. J., Christensen, T. A., Mustaparta, H., and Baker, T. C. 1991. Chemical communication in heliothine moths III. Flight behavior of male Helicoverpa zea and Heliothis virescens in response to varying ratios of intra- and interspecific sex pheromone components. J. Comp. Physiol. A 169:275–280.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Astrid T. Groot
    • 1
    Email author
  • Richard G. Santangelo
    • 1
  • Emmarita Ricci
    • 1
  • Cavell Brownie
    • 2
  • Fred Gould
    • 1
  • Coby Schal
    • 1
  1. 1.Department of Entomology and W. M. Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighUSA
  2. 2.Department of StatisticsNorth Carolina State UniversityRaleighUSA

Personalised recommendations